CROSS-INVARIANT SETS OF THE COUPLED NONLINEAR SCHRÖDINGER SYSTEM WITH HARMONIC POTENTIALS

被引:0
作者
Zhou, Xinlu [1 ]
Zhang, Jian [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Math Sci, Chengdu 611731, Sichuan, Peoples R China
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2024年
基金
中国国家自然科学基金;
关键词
Bose-Einstein condensates; coupled nonlinear Schr & ouml; dinger system; cross-invariant sets; sharp condition; global existence; SCHRODINGER-EQUATIONS; GLOBAL EXISTENCE; SHARP THRESHOLD; SOLITARY WAVES; GROUND-STATES; BOUND-STATES; SPIKES;
D O I
10.3934/dcdsb.2024186
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies the coupled nonlinear Schr & ouml;dinger system with harmonic potentials { - i phi t = triangle phi - |x|(2)phi + mu (1)|phi|(2) phi + beta|psi|(2)phi, (t, x) is an element of R+ x R-N, - i psi t = triangle psi - |x|(2) psi + mu (2)|psi|(2)psi + beta|phi|(2) psi, (t, x) is an element of R+ x R-N, which describes the Bose-Einstein condensates under the magnetic trap. The cross-invariant sets of the evolution flow are obtained by constructing the cross constrained variational problem. Moreover, the sharp condition for global existence and blowup of the solutions is derived.
引用
收藏
页码:2729 / 2739
页数:11
相关论文
共 50 条
[21]   Segregated solutions for a nonlinear Schrödinger system involving mass supercritical exponents [J].
Guo, Qidong ;
Hua, Qiaoqiao .
NONLINEARITY, 2025, 38 (03)
[22]   Global and Local Solutions of Stochastic Nonlinear Schrödinger System With Quadratic Interaction [J].
Hamano, Masaru ;
Hashimoto, Shunya ;
Machihara, Shuji .
BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2024, 50 (02)
[23]   Sharp Threshold of Global Existence for a Nonlocal Nonlinear Schrödinger System in ℝ3 [J].
Zaihui Gan ;
Xin Jiang ;
Jing Li .
Chinese Annals of Mathematics, Series B, 2019, 40 :131-160
[24]   On a Schrödinger system arizing in nonlinear optics [J].
Filipe Oliveira ;
Ademir Pastor .
Analysis and Mathematical Physics, 2021, 11
[25]   A General Coupled Derivative Nonlinear Schrödinger System: Darboux Transformation and Soliton Solutions [J].
Kuang, Yonghui .
JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2024, 31 (01)
[26]   RESEARCH ANNOUNCEMENTS Persistent Homoclinic Orbits for a Perturbed Coupled Nonlinear Schr(?)dinger System [J].
高平 ;
赵怡 .
数学进展, 2002, (06) :571-572
[27]   Nonlinear waves behaviors for a coupled generalized nonlinear Schrödinger–Boussinesq system in a homogeneous magnetized plasma [J].
Zhong-Zhou Lan ;
Bo-Ling Guo .
Nonlinear Dynamics, 2020, 100 :3771-3784
[28]   Sharp Threshold of Global Existence for a Nonlocal Nonlinear Schrdinger System in R~3 [J].
Zaihui GAN ;
Xin JIANG ;
Jing LI .
Chinese Annals of Mathematics,Series B, 2019, (01) :131-160
[29]   Optimal pinwheel partitions and pinwheel solutions to a nonlinear Schrödinger system [J].
Clapp, Monica ;
Saldana, Alberto ;
Soares, Mayra ;
Vicente-Benitez, Vctor A. .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2024,
[30]   Null Structure in a System of Quadratic Derivative Nonlinear Schrödinger Equations [J].
Masahiro Ikeda ;
Soichiro Katayama ;
Hideaki Sunagawa .
Annales Henri Poincaré, 2015, 16 :535-567