Environmental stresses, particularly drought and salinity, significantly impair plant growth and productivity. This study explores the novel synergistic interaction between biochar and arbuscular mycorrhizal fungi (AMF) in enhancing the resilience of sweet pepper plants subjected to the individual or combined stresses of drought and salinity. The impact of these biostimulants on growth parameters, photosynthetic efficiency, and biochemical traits was assessed. Sweet pepper plants were subjected to drought stress (35 and 75% of field capacity (FC)), salinity (0 and 150 mM NaCl), and their combined effects (150 mM NaCl +35% of FC), with treatments including biochar (2.5 g/kg soil), AMF, and their combination. Under drought stress, the dual application of biochar and AMF notably improved plant growth indicators such as shoot fresh weight, shoot height, and number of leaves by 50, 14, and 3%, respectively compared to the control plants. Under drought and salinity combined, this combination also enhanced photosynthetic pigments content by 144% for Chl a, 316% for Chl b, 212% for Chl T and 302% for carotenoids content respectively compared to the control plants. Additionally, AMF and Biochar combined reduced the oxidative effect of malondialdehyde (MDA) by 37% and hydrogen peroxide (H2O2) by 43%, indicating a reduction in oxidative damage. Furthermore, a significant increase in antioxidant enzyme activities was observed, with peroxidase activity (POX) rising by 33% and polyphenol oxidase activity (PPO) increasing by 212%, indicating enhanced stress tolerance. This study underscores the efficacy of using biochar and AMF together to bolster sweet pepper plant resilience, offering a viable strategy for improving plant performance under challenging environmental conditions.