Study on the hydrogen embrittlement behaviour of ultrasonic surface rolling gradient structural materials under alternating stress

被引:0
作者
Wang, Gang [1 ,2 ]
Wang, Mian [1 ,2 ]
Zhang, Xinjun [1 ]
Tong, Yang [1 ,2 ]
Liang, Lunsu [1 ]
Xu, Guangtao [1 ,2 ]
Zhao, Minghao [1 ,2 ]
Li, Lingxiao [1 ,2 ,3 ]
机构
[1] Zhengzhou Univ, Sch Mech & Power Engn, Zhengzhou 450001, Henan, Peoples R China
[2] Zhengzhou Univ, Henan Key Engn Lab Antifatigue Mfg Technol, Zhengzhou 450001, Henan, Peoples R China
[3] Zhengzhou Univ, Sch Mat Sci & Engn, Zhengzhou 450001, Henan, Peoples R China
来源
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING | 2025年 / 929卷
基金
中国国家自然科学基金;
关键词
Hydrogen embrittlement; Ultrasonic surface rolling; Displacement amplitude; Fatigue; HE-resistant; FATIGUE-CRACK GROWTH; INDUCED AMORPHIZATION; PIPELINE STEELS; STAINLESS-STEEL;
D O I
10.1016/j.msea.2025.148131
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The in situ hydrogen embrittlement (HE) behaviour and mechanism of ultrasonic surface rolling (USR)-induced surface gradient structured materials under alternating stresses were investigated. The results showed that hydrogen-induced amorphous phenomenon occurs in H-charging fatigue specimens, which leads to hydrogenassisted crack initiation, the increase of displacement amplitude (DA) values and the decrease of fatigue life. The combined effect of surface roughness reduction, grain refinement and residual compressive stress induced by the application of USR treatment to the materials reduced the hydrogen adsorption capacity, hindered hydrogen diffusion, and alleviated hydrogen-induced cracks.
引用
收藏
页数:14
相关论文
共 8 条
  • [1] A model for the behaviour of materials with cracks under hydrogen embrittlement conditions
    Goldstein, RV
    Balueva, AV
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 1997, 20 (09) : 1269 - 1277
  • [2] Fatigue behaviors of ultrasonic surface rolling processed AISI 1045: The role of residual stress and gradient microstructure
    Zhao, Yangyang
    Gong, Baoming
    Liu, Yong
    Zhang, Wenqiang
    Deng, Caiyan
    INTERNATIONAL JOURNAL OF FATIGUE, 2024, 178
  • [3] Gradient residual stress evolution and its influence on fatigue life under combined carburising heat treatment and ultrasonic surface rolling process
    Wang, Gang
    Hou, Xiaofan
    Zhang, Yue
    Peng, Zhenlong
    Xu, Guangtao
    Zhao, Minghao
    ENGINEERING FRACTURE MECHANICS, 2024, 308
  • [4] Study on Microstructure Evolution Mechanism of Gradient Structure Surface of AA7075 Aluminum Alloy by Ultrasonic Surface Rolling Treatment
    Fu, Lei
    Li, Xiulan
    Lin, Li
    Wang, Zhengguo
    Zhang, Yingqian
    Luo, Yunrong
    Yan, Shisen
    He, Chao
    Wang, Qingyuan
    MATERIALS, 2023, 16 (16)
  • [5] Study on gradient structure and surface strengthening mechanism of LPBF 2099 Al-Li alloy induced by ultrasonic surface rolling
    Huang, Lei
    Gou, Yanqiang
    Li, Li
    Zhou, Jianzhong
    Meng, Xiankai
    Huang, Shu
    JOURNAL OF ALLOYS AND COMPOUNDS, 2025, 1022
  • [6] In situ study on the orientation and strain-rate correlation mechanism of hydrogen embrittlement behavior of ferrite under shear stress
    Li, Lingxiao
    Liang, Lunsu
    Wang, Yuhao
    Liu, Jiyan
    Sun, Minghan
    Zhao, Pei
    Hu, Junhua
    Xu, Guangtao
    Wang, Gang
    Xu, Kai
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 33 : 9674 - 9692
  • [7] A deformation-diffusion interactive model to study crack-tip behaviour and predict crack growth rate under fatigue and hydrogen-embrittlement conditions
    Kashinga, Rudolph J.
    Liu, Shenguang
    Zhang, Tianyu
    Zhang, Xing
    Zhang, Lu
    Zhao, Liguo
    ENGINEERING FRACTURE MECHANICS, 2024, 312
  • [8] Numerical modeling considering initial gradient mechanical properties and experiment verification of residual stress distribution evolution of 12Cr2Ni4A steel generated by ultrasonic surface rolling
    Tang, Jinyuan
    Shi, Yu
    Zhao, Jiuyue
    Chen, Liwei
    Wu, Zhenyu
    SURFACE & COATINGS TECHNOLOGY, 2023, 452