Large-Scale Independent Vector Analysis (IVA-G) via Coresets

被引:0
作者
Gabrielson, Ben [1 ]
Yang, Hanlu [1 ]
Vu, Trung [1 ]
Calhoun, Vince [2 ]
Adali, Tulay [1 ]
机构
[1] Univ Maryland Baltimore Cty, Dept Comp Sci & Elect Engn, Baltimore, MD 21250 USA
[2] Emory Univ, Georgia Inst Technol, Tri Inst Ctr Translat Res Neuroimaging & Data Sci, Georgia StateUnivers, Atlanta, GA 30303 USA
关键词
Vectors; Covariance matrices; Indexes; Magnetic cores; Functional magnetic resonance imaging; Correlation; Blind source separation; Analytical models; Numerical models; Costs; Joint blind source separation; independent vector analysis; multiset canonical correlation analysis; BLIND SOURCE SEPARATION; JOINT DIAGONALIZATION; SCHIZOPHRENIA NETWORK; PHENOTYPES; PSYCHOSIS; BIPOLAR;
D O I
10.1109/TSP.2024.3517323
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Joint blind source separation (JBSS) involves the factorization of multiple matrices, i.e. "datasets", into "sources" that are statistically dependent across datasets and independent within datasets. Despite this usefulness for analyzing multiple datasets, JBSS methods suffer from considerable computational costs and are typically intractable for hundreds or thousands of datasets. To address this issue, we present a methodology for how a subset of the datasets can be used to perform efficient JBSS over the full set. We motivate two such methods: a numerical extension of independent vector analysis (IVA) with the multivariate Gaussian model (IVA-G), and a recently proposed analytic method resembling generalized joint diagonalization (GJD). We derive nonidentifiability conditions for both methods, and then demonstrate how one can significantly improve these methods' generalizability by an efficient representative subset selection method. This involves selecting a coreset (a weighted subset) that minimizes a measure of discrepancy between the statistics of the coreset and the full set. Using simulated and real functional magnetic resonance imaging (fMRI) data, we demonstrate significant scalability and source separation advantages of our "coreIVA-G" method vs. other JBSS methods.
引用
收藏
页码:230 / 244
页数:15
相关论文
共 33 条
  • [1] Adali T, 2015, P IEEE, V103, P1494, DOI 10.1109/JPROC.2015.2461601
  • [2] Diversity in Independent Component and Vector Analyses [Identifiability, algorithms, and applications in medical imaging]
    Adali, Tuelay
    Anderson, Matthew
    Fu, Geng-Shen
    [J]. IEEE SIGNAL PROCESSING MAGAZINE, 2014, 31 (03) : 18 - 33
  • [3] A baseline for the multivariate comparison of resting-state networks
    Allen, Elena A.
    Erhardt, Erik B.
    Damaraju, Eswar
    Gruner, William
    Segall, Judith M.
    Silva, Rogers F.
    Havlicek, Martin
    Rachakonda, Srinivas
    Fries, Jill
    Kalyanam, Ravi
    Michael, Andrew M.
    Caprihan, Arvind
    Turner, Jessica A.
    Eichele, Tom
    Adelsheim, Steven
    Bryan, Angela D.
    Bustillo, Juan
    Clark, Vincent P.
    Ewing, Sarah W. Feldstein
    Filbey, Francesca
    Ford, Corey C.
    Hutchison, Kent
    Jung, Rex E.
    Kiehl, Kent A.
    Kodituwakku, Piyadasa
    Komesu, Yuko M.
    Mayer, Andrew R.
    Pearlson, Godfrey D.
    Phillips, John P.
    Sadek, Joseph R.
    Stevens, Michael
    Teuscher, Ursina
    Thoma, Robert J.
    Calhoun, Vince D.
    [J]. FRONTIERS IN SYSTEMS NEUROSCIENCE, 2011, 5
  • [4] Amari S, 1996, ADV NEUR IN, V8, P757
  • [5] Independent Vector Analysis: Identification Conditions and Performance Bounds
    Anderson, Matthew
    Fu, Geng-Shen
    Phlypo, Ronald
    Adali, Tulay
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2014, 62 (17) : 4399 - 4410
  • [6] Joint Blind Source Separation With Multivariate Gaussian Model: Algorithms and Performance Analysis
    Anderson, Matthew
    Adali, Tuelay
    Li, Xi-Lin
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (04) : 1672 - 1683
  • [7] Boukouvalas Z., 2018, ARXIV
  • [8] Comon P, 2010, HANDBOOK OF BLIND SOURCE SEPARATION: INDEPENDENT COMPONENT ANALYSIS AND APPLICATIONS, P1
  • [9] Comparison of IVA and GIG-ICA in Brain Functional Network Estimation Using fMRI Data
    Du, Yuhui
    Lin, Dongdong
    Yu, Qingbao
    Sui, Jing
    Chen, Jiayu
    Rachakonda, Srinivas
    Adali, Tulay
    Calhoun, Vince D.
    [J]. FRONTIERS IN NEUROSCIENCE, 2017, 11
  • [10] Gabrielson Ben, 2023, ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), P1, DOI 10.1109/ICASSP49357.2023.10096698