Optimization of Visual SLAM for Mobile Robots in Complex Environments: Tight Coupling of Visual-Inertial Fusion and Efficient Loop Closure Detection Strategies

被引:1
作者
Fu, Bo [1 ]
Wei, Wei [1 ]
Guo, Zhiyuan [1 ]
Ren, Yuhan [1 ]
机构
[1] Dept Xian Univ Technol, Xian, Shaanxi, Peoples R China
来源
2024 3RD INTERNATIONAL CONFERENCE ON ROBOTICS, ARTIFICIAL INTELLIGENCE AND INTELLIGENT CONTROL, RAIIC 2024 | 2024年
基金
国家重点研发计划;
关键词
Mobile Robots; Visual SLAM; Graph Optimization; Environmental Perception; ROBUST;
D O I
10.1109/RAIIC61787.2024.10670802
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This study tackles mobile robots' environmental perception challenges in complexity, presenting an advanced Visual-Inertial SLAM (VSLAM) technique that enhances accuracy, robustness, and real-time functionality. It bolsters visual odometry with ORB features for meticulous matching and selects keyframes, integrating IMU data for robust motion handling in low-textured scenes. Rear-end operations employ graph optimization and a bag-of-words-based loop closure, utilizing sliding window optimization and marginalization to curb accumulative errors, ensuring trajectory and map consistency. Experiments on KITTI, EuRoC, and TUM datasets surpass conventional methods like ORB-SLAM2 and VINS-Mono, trimming trajectory and mapping inaccuracies by 23.8% and 41.7%, respectively, with robust adaptability across motion modes and environments. System module timing analysis paves the way for real-time deployment on less powerful hardware. Future research directions include direct visual odometry, dynamic environment adaptation, multi-sensor fusion, and large-scale scene comprehension, pushing SLAM's frontier in intricate dynamics and empowering autonomous robot navigation.
引用
收藏
页码:104 / 109
页数:6
相关论文
共 17 条
[1]  
Amraoui Mounir, 2019, 2019 4 WORLD C COMPL, P1
[2]  
Bala JA, 2022, 2022 IEEE NIG 4 INT, P1
[3]  
Basiri Amin, 2022, IECON 2022 48 ANN C, P1
[4]  
Bloesch M, 2015, IEEE INT C INT ROBOT, P298, DOI 10.1109/IROS.2015.7353389
[5]   The EuRoC micro aerial vehicle datasets [J].
Burri, Michael ;
Nikolic, Janosch ;
Gohl, Pascal ;
Schneider, Thomas ;
Rehder, Joern ;
Omari, Sammy ;
Achtelik, Markus W. ;
Siegwart, Roland .
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2016, 35 (10) :1157-1163
[6]   Can Semantic-based Filtering of Dynamic Objects improve Visual SLAM and Visual Odometry? [J].
Costa, Leonardo Rezende ;
Colombini, Esther Luna .
2023 LATIN AMERICAN ROBOTICS SYMPOSIUM, LARS, 2023 BRAZILIAN SYMPOSIUM ON ROBOTICS, SBR, AND 2023 WORKSHOP ON ROBOTICS IN EDUCATION, WRE, 2023, :567-572
[7]  
Crocetto N, 2023, 2023 IEEE INTERNATIONAL WORKSHOP ON METROLOGY FOR THE SEA
[8]   ANALYSIS OF THE PERFORMANCE OF A LOW-COST V-SLAM DEVICE IN GNSS-DENIED ENVIRONMENT [J].
Crocetto, Nicola .
2023 IEEE INTERNATIONAL WORKSHOP ON METROLOGY FOR THE SEA; LEARNING TO MEASURE SEA HEALTH PARAMETERS, METROSEA, 2023, :192-196
[9]   Vision meets robotics: The KITTI dataset [J].
Geiger, A. ;
Lenz, P. ;
Stiller, C. ;
Urtasun, R. .
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2013, 32 (11) :1231-1237
[10]   Point Cloud Change Detection With Stereo V-SLAM: Dataset, Metrics and Baseline [J].
Lin, Zihan ;
Yu, Jincheng ;
Zhou, Lipu ;
Zhang, Xudong ;
Wang, Jian ;
Wang, Yu .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (04) :12443-12450