LS-YOLO: A Lightweight Selective YOLOv8 Algorithm for UAV Aerial Photography

被引:0
作者
Pan, Wei [1 ]
Yang, Zhe [1 ]
机构
[1] Soochow Univ, Sch Comp Sci & Technol, Suzhou 215006, Peoples R China
来源
PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2024, PT XII | 2025年 / 15042卷
关键词
UAV; Small object detection; YOLOv8; Lightweight;
D O I
10.1007/978-981-97-8858-3_13
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Object detection for unmanned aerial vehicles (UAV) aerial photography presents challenges such as tiny and densely distributed objects, and unbalanced categories. Furthermore, the hardware limitations of UAV restrict the scalability of models, leading to reduced accuracy. In response to these challenges, an enhanced YOLOv8m model which incorporates multiple lightweight strategies is proposed. Specifically, GDC (Ghost Dynamic Conv) is introduced into the backbone network to improve feature extraction, and more features are generated with fewer parameters to achieve efficient feature extraction. Additionally, the feature fusion mechanism has been optimized, and the LS-FPN-PAN feature fusion mechanism has been devised to globally reduce the number of feature channels and amount of calculation. Through adaptive feature selection, the channel weight was given to achieve better fusion. Furthermore, a lightweight selective detection head was proposed, and shared convolution was employed to facilitate the learning of target features by three detection heads. The WMPDIoU loss function was designed to reduce the penalty caused by the geometric factors of the detection box of tiny objects. The cost-free approach of substituting NMS function and implementing knowledge distillation is employed to enhance the model's performance. The experimental results show that the model size and parameter number of the improved model are only 42.1% and 55.1% of the original model, but the performance is considerably improved. On the Visdrone2019 test dataset, P, mAP@0.5, mAP@0.5:0.95 are increased by 12.9%, 26.5% and 38.8% respectively, indicating a successful realization of lightweight design with enhanced performance capabilities suitable for effective application in object detection tasks on UAV platforms.
引用
收藏
页码:186 / 200
页数:15
相关论文
共 50 条
  • [21] MI-YOLO: An Improved Traffic Sign Detection Algorithm Based on YOLOv8
    Wang, Shuo
    Xu, Yang
    ENGINEERING LETTERS, 2024, 32 (12) : 2336 - 2345
  • [22] YOLO-ERF: lightweight object detector for UAV aerial images
    Xin Wang
    Ning He
    Chen Hong
    Fengxi Sun
    Wenjing Han
    Qi Wang
    Multimedia Systems, 2023, 29 (6) : 3329 - 3339
  • [23] YOLO-ERF: lightweight object detector for UAV aerial images
    Wang, Xin
    He, Ning
    Hong, Chen
    Sun, Fengxi
    Han, Wenjing
    Wang, Qi
    MULTIMEDIA SYSTEMS, 2023, 29 (06) : 3329 - 3339
  • [24] YOLOv7-P: a lighter and more effective UAV aerial photography object detection algorithm
    Sun, Fengxi
    He, Ning
    Wang, Xin
    Liu, Hongfei
    Zou, Yuxiang
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (11) : 8327 - 8335
  • [25] A lightweight algorithm for steel surface defect detection using improved YOLOv8
    Ma, Shuangbao
    Zhao, Xin
    Wan, Li
    Zhang, Yapeng
    Gao, Hongliang
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [26] Improved YOLOv7 Target Detection Algorithm Based on UAV Aerial Photography
    Bai, Zhen
    Pei, Xinbiao
    Qiao, Zheng
    Wu, Guangxin
    Bai, Yue
    DRONES, 2024, 8 (03)
  • [27] Lightweight rail surface defect detection algorithm based on an improved YOLOv8
    Xu, CanYang
    Liao, Yingying
    Liu, Yongqiang
    Tian, Runliang
    Guo, Tao
    MEASUREMENT, 2025, 242
  • [28] FE-YOLO: A Lightweight Model for Construction Waste Detection Based on Improved YOLOv8 Model
    Yang, Yizhong
    Li, Yexue
    Tao, Maohu
    BUILDINGS, 2024, 14 (09)
  • [29] Subtle-YOLOv8: a detection algorithm for tiny and complex targets in UAV aerial imagery
    Zhao, Sicheng
    Chen, Jinguang
    Ma, Lili
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (12) : 8949 - 8964
  • [30] Improved YOLOv5s Algorithm for Small Target Detection in UAV Aerial Photography
    Li, Shixin
    Liu, Chen
    Tang, Kaiwen
    Meng, Fanrun
    Zhu, Zhiren
    Zhou, Liming
    Chen, Fankai
    IEEE ACCESS, 2024, 12 : 9784 - 9791