Structure of a Cyclic Peptide as an Inhibitor of Mycobacterium tuberculosis Transcription: NMR and Molecular Dynamics Simulations

被引:0
作者
Stephanie, Filia [1 ,2 ]
Tambunan, Usman Sumo Friend [2 ]
Kuczera, Krzysztof [3 ,4 ]
Siahaan, Teruna J. [1 ]
机构
[1] Univ Kansas, Sch Pharm, Dept Pharmaceut Chem, Lawrence, KS 66047 USA
[2] Univ Indonesia, Dept Chem, Depok 16424, Indonesia
[3] Univ Kansas, Dept Chem, Lawrence, KS 66045 USA
[4] Univ Kansas, Dept Mol Biosci, Lawrence, KS 66045 USA
基金
美国国家卫生研究院;
关键词
cyclic peptide conformation; molecular dynamics simulation; mRNA polymerase inhibitor; Mycobacterium tuberculosis; nuclear magnetic resonance; CONFORMATION; PERMEATION; RESISTANCE; MECHANISMS; PRODRUG;
D O I
10.3390/ph17111545
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Background and Objectives: A novel antitubercular cyclic peptide, Cyclo(1,6)-Ac-CLYHFC-NH2, was designed to bind at the rifampicin (RIF) binding site on the RNA polymerase (RNAP) of Mycobacterium tuberculosis (MTB). This peptide inhibits RNA elongation in the MTB transcription initiation assay in the nanomolar range, which can halt the MTB transcription initiation complex, similar to RIF. Therefore, determining the solution conformation of this peptide is useful in improving the peptide's binding affinity to the RNAP. Methods: Here, the solution structure of Cyclo(1,6)-Ac-CLYHFC-NH2 was determined by two-dimensional (2D) NMR experiments and NMR-restrained molecular dynamic (MD) simulations. Results: All protons of Cyclo(1,6)-Ac-CLYHFC-NH2 were assigned using TOCSY and NOE NMR spectroscopy. The NOE cross-peak intensities were used to calculate interproton distances within the peptide. The JNH-HC alpha coupling constants were used to determine the possible Phi angles within the peptide. The interproton distances and calculated Phi angles from NMR were used in NMR-restrained MD simulations. The NOE spectra showed NH-to-NH cross-peaks at Leu2-to-Tyr3 and Tyr3-to-His4, indicating a beta I-turn formation at the Cys1-Leu2-Tyr3-His4 sequence. Conclusions: The NMR-restrained MD simulations showed several low-energy conformations that were congruent with the NMR data. Finally, the conformation of this peptide will be used to design derivatives that can better inhibit RNAP activity.
引用
收藏
页数:15
相关论文
共 50 条
[31]   Gen-AI Methods, Molecular Docking and Molecular Dynamics Simulations for Identification of Novel Inhibitors of MmPL3 Transporter of Mycobacterium tuberculosis [J].
Pawar, Atul ;
Almutairi, Tahani Mazyad ;
Shinde, Omkar ;
Chikhale, Rupesh .
JOURNAL OF COMPUTATIONAL BIOPHYSICS AND CHEMISTRY, 2025, 24 (04) :471-489
[32]   Inter-cage dynamics in structure I, II, and H fluoromethane hydrates as studied by NMR and molecular dynamics simulations [J].
Trueba, Alondra Torres ;
Kroon, Maaike C. ;
Peters, Cor J. ;
Moudrakovski, Igor L. ;
Ratcliffe, Christopher I. ;
Alavi, Saman ;
Ripmeester, John A. .
JOURNAL OF CHEMICAL PHYSICS, 2014, 140 (21)
[33]   Drug targeted virtual screening and molecular dynamics of LipU protein of Mycobacterium tuberculosis and Mycobacterium leprae [J].
Kaur, Gurkamaljit ;
Pandey, Bharati ;
Kumar, Arbind ;
Garewal, Naina ;
Grover, Abhinav ;
Kaur, Jagdeep .
JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, 2019, 37 (05) :1254-1269
[34]   Molecular mechanism of a triazole-containing inhibitor of Mycobacterium tuberculosis DNA gyrase [J].
Gedeon, Antoine ;
Yab, Emilie ;
Dinut, Aurelia ;
Sadowski, Elodie ;
Capton, Estelle ;
Dreneau, Aurore ;
Petit, Julienne ;
Gioia, Bruna ;
Piveteau, Catherine ;
Djaout, Kamel ;
Lecat, Estelle ;
Wehenkel, Anne Marie ;
Gubellini, Francesca ;
Mechaly, Ariel ;
Alzari, Pedro M. ;
Deprez, Benoit ;
Baulard, Alain ;
Aubry, Alexandra ;
Willand, Nicolas ;
Petrella, Stephanie .
ISCIENCE, 2024, 27 (10)
[35]   Probing the Molecular Basis of Aminoacyl-Adenylate Affinity With Mycobacterium tuberculosis Leucyl-tRNA Synthetase Employing Molecular Dynamics, Umbrella Sampling Simulations and Site-Directed Mutagenesis [J].
Volynets, Galyna P. ;
Gudzera, Olga I. ;
Usenko, Mariia O. ;
Gorbatiuk, Oksana B. ;
Bdzhola, Volodymyr G. ;
Kotey, Igor M. ;
Balanda, Anatoliy O. ;
Prykhod'ko, Andrii O. ;
Lukashov, Sergiy S. ;
Chuk, Oleksiy A. ;
Skydanovych, Oleksandra I. ;
Yaremchuk, Ganna D. ;
Yarmoluk, Sergiy M. ;
Tukalo, Michael A. .
JOURNAL OF MOLECULAR RECOGNITION, 2025, 38 (02)
[36]   In silico Screening of Food and Drug Administration-approved Compounds against Trehalose 2-sulfotransferase (Rv0295c) in Mycobacterium tuberculosis: Insights from Molecular Docking and Dynamics Simulations [J].
Sharma, Devesh ;
Gautam, Sakshi ;
Srivastava, Nalini ;
Bisht, Deepa .
INTERNATIONAL JOURNAL OF MYCOBACTERIOLOGY, 2024, 13 (01) :73-82
[37]   Structure of Mycobacterium tuberculosis thioredoxin in complex with quinol inhibitor PMX464 [J].
Hall, Gareth ;
Bradshaw, Tracey D. ;
Laughton, Charles A. ;
Stevens, Malcolm F. ;
Emsley, Jonas .
PROTEIN SCIENCE, 2011, 20 (01) :210-215
[38]   Mycobacterium tuberculosis KasA as a drug target: Structure-based inhibitor design [J].
Rudraraju, Reshma S. ;
Daher, Samer S. ;
Gallardo-Macias, Ricardo ;
Wang, Xin ;
Neiditch, Matthew B. ;
Freundlich, Joel S. .
FRONTIERS IN CELLULAR AND INFECTION MICROBIOLOGY, 2022, 12
[39]   Structure Formation in Langmuir Peptide Films As Revealed from Coarse-Grained Molecular Dynamics Simulations [J].
Knecht, Volker ;
Reiter, Guenter ;
Schlaad, Helmut ;
Reiter, Renate .
LANGMUIR, 2017, 33 (26) :6492-6502
[40]   Structure and Dynamics of Spherical and Rodlike Alkyl Ethoxylate Surfactant Micelles Investigated Using NMR Relaxation and Atomistic Molecular Dynamics Simulations [J].
Edwards, Allison Talley ;
Javidialesaadi, Abdolreza ;
Weigandt, Katie M. ;
Stan, George ;
Eads, Charles D. .
LANGMUIR, 2019, 35 (43) :13880-13892