Quasiconjugate duality and optimality conditions for quasiconvex optimization

被引:0
作者
Suzuki, Satoshi [1 ]
机构
[1] Shimane Univ, Dept Math Sci, 1060 Nishikawatsu Cho, Matsue, Shimane 6908504, Japan
基金
日本学术振兴会;
关键词
Quasiconvex optimization; Quasiconjugate function; Quasi-subdifferential; Strong duality; Optimality condition;
D O I
10.1007/s10898-024-01455-4
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In nonlinear optimization, conjugate functions and subdifferentials play an essential role. In particular, Fenchel conjugate is the most well known conjugate function in convex optimization. In quasiconvex optimization, extra parameters for quasiconjugate functions have been introduced in order to show duality theorems, for example lambda\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}-quasiconjugate and lambda\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}-semiconjugate. By these extra parameters, we can show duality results that hold for general quasiconvex objective functions. On the other hand, extra parameters usually increase the complexity of dual problems. Hence, conjugate functions without extra parameters have also been investigated, for example H-quasiconjugate, R-quasiconjugate, and so on. However, there are some open problems. In this paper, we study quasiconjugate duality and optimality conditions for quasiconvex optimization without extra parameters. We investigate three types of quasiconjugate dual problems, and show sufficient conditions for strong duality. We introduce three types of quasi-subdifferentials, and study optimality conditions and characterizations of the solution set. Additionally, we give a classification of quasiconvex optimization problems in terms of quasiconjugate duality.
引用
收藏
页码:279 / 293
页数:15
相关论文
共 50 条
  • [21] Proximal penalty-duality algorithms for mixed optimality conditions
    Gonzalo Alduncin
    Journal of Fixed Point Theory and Applications, 2017, 19 : 1775 - 1791
  • [22] Optimality Conditions for Vector Optimization Problems
    N. J. Huang
    J. Li
    S. Y. Wu
    Journal of Optimization Theory and Applications, 2009, 142 : 323 - 342
  • [23] Optimality Conditions for Vector Optimization Problems
    Huang, N. J.
    Li, J.
    Wu, S. Y.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2009, 142 (02) : 323 - 342
  • [24] GLOBAL OPTIMALITY CONDITIONS AND DUALITY THEOREMS FOR ROBUST OPTIMAL SOLUTIONS OF OPTIMIZATION PROBLEMS WITH DATA UNCERTAINTY, USING UNDERESTIMATORS
    Kerdkaew, Jutamas
    Wangkeeree, Rabian
    Wangkeeree, Rattanaporn
    NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2022, 12 (01): : 93 - 107
  • [25] OPTIMALITY CONDITIONS AND DUALITY OF THE SET-VALUED FRACTIONAL PROGRAMMING PROBLEM
    Zhou, Zhi-ang
    Chen, Wang
    PACIFIC JOURNAL OF OPTIMIZATION, 2019, 15 (04): : 639 - 651
  • [26] Optimality and Duality for Robust Optimization Problems Involving Intersection of Closed Sets
    Hung, Nguyen Canh
    Chuong, Thai Doan
    Anh, Nguyen Le Hoang
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2024, 202 (02) : 771 - 794
  • [27] OPTIMALITY CONDITIONS AND DUALITY FOR MINIMAX FRACTIONAL PROGRAMMING PROBLEMS WITH DATA UNCERTAINTY
    Li, Xiao-Bing
    Wang, Qi-Lin
    Lin, Zhi
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2019, 15 (03) : 1133 - 1151
  • [28] ROBUST OPTIMALITY AND DUALITY IN MULTIOBJECTIVE OPTIMIZATION PROBLEMS UNDER DATA UNCERTAINTY
    Thai Doan Chuong
    SIAM JOURNAL ON OPTIMIZATION, 2020, 30 (02) : 1501 - 1526
  • [29] On ε-optimality conditions for multiobjective fractional optimization problems
    Moon Hee Kim
    Gwi Soo Kim
    Gue Myung Lee
    Fixed Point Theory and Applications, 2011
  • [30] Optimality Conditions for Nonconvex Constrained Optimization Problems
    Mashkoorzadeh, F.
    Movahedian, N.
    Nobakhtian, S.
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2019, 40 (16) : 1918 - 1938