Quasiconjugate duality and optimality conditions for quasiconvex optimization

被引:0
作者
Suzuki, Satoshi [1 ]
机构
[1] Shimane Univ, Dept Math Sci, 1060 Nishikawatsu Cho, Matsue, Shimane 6908504, Japan
基金
日本学术振兴会;
关键词
Quasiconvex optimization; Quasiconjugate function; Quasi-subdifferential; Strong duality; Optimality condition;
D O I
10.1007/s10898-024-01455-4
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In nonlinear optimization, conjugate functions and subdifferentials play an essential role. In particular, Fenchel conjugate is the most well known conjugate function in convex optimization. In quasiconvex optimization, extra parameters for quasiconjugate functions have been introduced in order to show duality theorems, for example lambda\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}-quasiconjugate and lambda\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}-semiconjugate. By these extra parameters, we can show duality results that hold for general quasiconvex objective functions. On the other hand, extra parameters usually increase the complexity of dual problems. Hence, conjugate functions without extra parameters have also been investigated, for example H-quasiconjugate, R-quasiconjugate, and so on. However, there are some open problems. In this paper, we study quasiconjugate duality and optimality conditions for quasiconvex optimization without extra parameters. We investigate three types of quasiconjugate dual problems, and show sufficient conditions for strong duality. We introduce three types of quasi-subdifferentials, and study optimality conditions and characterizations of the solution set. Additionally, we give a classification of quasiconvex optimization problems in terms of quasiconjugate duality.
引用
收藏
页码:279 / 293
页数:15
相关论文
共 50 条
[21]   Proximal penalty-duality algorithms for mixed optimality conditions [J].
Gonzalo Alduncin .
Journal of Fixed Point Theory and Applications, 2017, 19 :1775-1791
[22]   Optimality Conditions for Vector Optimization Problems [J].
N. J. Huang ;
J. Li ;
S. Y. Wu .
Journal of Optimization Theory and Applications, 2009, 142 :323-342
[23]   Optimality Conditions for Vector Optimization Problems [J].
Huang, N. J. ;
Li, J. ;
Wu, S. Y. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2009, 142 (02) :323-342
[24]   GLOBAL OPTIMALITY CONDITIONS AND DUALITY THEOREMS FOR ROBUST OPTIMAL SOLUTIONS OF OPTIMIZATION PROBLEMS WITH DATA UNCERTAINTY, USING UNDERESTIMATORS [J].
Kerdkaew, Jutamas ;
Wangkeeree, Rabian ;
Wangkeeree, Rattanaporn .
NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2022, 12 (01) :93-107
[25]   OPTIMALITY CONDITIONS AND DUALITY FOR MINIMAX FRACTIONAL PROGRAMMING PROBLEMS WITH DATA UNCERTAINTY [J].
Li, Xiao-Bing ;
Wang, Qi-Lin ;
Lin, Zhi .
JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2019, 15 (03) :1133-1151
[26]   OPTIMALITY CONDITIONS AND DUALITY OF THE SET-VALUED FRACTIONAL PROGRAMMING PROBLEM [J].
Zhou, Zhi-ang ;
Chen, Wang .
PACIFIC JOURNAL OF OPTIMIZATION, 2019, 15 (04) :639-651
[27]   Optimality and Duality for Robust Optimization Problems Involving Intersection of Closed Sets [J].
Hung, Nguyen Canh ;
Chuong, Thai Doan ;
Anh, Nguyen Le Hoang .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2024, 202 (02) :771-794
[28]   ROBUST OPTIMALITY AND DUALITY IN MULTIOBJECTIVE OPTIMIZATION PROBLEMS UNDER DATA UNCERTAINTY [J].
Thai Doan Chuong .
SIAM JOURNAL ON OPTIMIZATION, 2020, 30 (02) :1501-1526
[29]   On ε-optimality conditions for multiobjective fractional optimization problems [J].
Moon Hee Kim ;
Gwi Soo Kim ;
Gue Myung Lee .
Fixed Point Theory and Applications, 2011
[30]   Optimality Conditions for Nonconvex Constrained Optimization Problems [J].
Mashkoorzadeh, F. ;
Movahedian, N. ;
Nobakhtian, S. .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2019, 40 (16) :1918-1938