Automated Machine Learning in Dentistry: A Narrative Review of Applications, Challenges, and Future Directions

被引:0
|
作者
Shujaat, Sohaib [1 ,2 ]
机构
[1] King Saud Bin Abdulaziz Univ Hlth Sci, Coll Dent, King Abdullah Int Med Res Ctr, Dept Maxillofacial Surg & Diagnost Sci,Minist Natl, POB 3660, Riyadh 11481, Saudi Arabia
[2] Univ Hosp Leuven, Fac Med, Dept Imaging & Pathol, OMFS IMPATH Res Grp,KU Leuven & Oral & Maxillofaci, B-3000 Leuven, Belgium
关键词
artificial intelligence; automated machine learning; dentistry; oral diagnosis; precision medicine; CLASSIFICATION; PREDICTION; CARIES;
D O I
10.3390/diagnostics15030273
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
The adoption of automated machine learning (AutoML) in dentistry is transforming clinical practices by enabling clinicians to harness machine learning (ML) models without requiring extensive technical expertise. This narrative review aims to explore the impact of autoML in dental applications. A comprehensive search of PubMed, Scopus, and Google Scholar was conducted without time and language restrictions. Inclusion criteria focused on studies evaluating autoML applications and performance for dental tasks. Exclusion criteria included non-dental studies, single-case reports, and conference abstracts. This review highlights multiple promising applications of autoML in dentistry. Diagnostic tasks showed high accuracy, such as 95.4% precision in dental implant classification and 92% accuracy in paranasal sinus disease detection. Predictive tasks also demonstrated promise, including 84% accuracy for ICU admissions due to dental infections and 93.9% accuracy in orthodontic extraction predictions. AutoML frameworks like Google Vertex AI and H2O AutoML emerged as key tools for these applications. AutoML shows great promise in transforming dentistry by facilitating data-driven decision-making and improving patient care quality through accessible, automated solutions. Future advancements should focus on enhancing model interpretability, developing large and annotated datasets, and creating pipelines tailored to dental tasks. Educating clinicians on autoML and integrating domain-specific knowledge into automated platforms could further bridge the gap between complex ML technology and practical dental applications.
引用
收藏
页数:17
相关论文
共 50 条
  • [11] Augmented, Virtual and Mixed Reality in Dentistry: A Narrative Review on the Existing Platforms and Future Challenges
    Monterubbianesi, Riccardo
    Tosco, Vincenzo
    Vitiello, Flavia
    Orilisi, Giulia
    Fraccastoro, Franco
    Putignano, Angelo
    Orsini, Giovanna
    APPLIED SCIENCES-BASEL, 2022, 12 (02):
  • [12] A comprehensive review on deep learning techniques in power system protection: Trends, challenges, applications and future directions
    Mishra, Manohar
    Singh, Jai Govind
    RESULTS IN ENGINEERING, 2025, 25
  • [13] A Review of Deep Learning and Machine Learning Techniques for Brain and Breast Cancer Detection: Challenges and Future Directions
    Dhole, Nandini V.
    Dixit, Vaibhav V.
    Mahajan, Rupesh G.
    JOURNAL OF MECHANICS IN MEDICINE AND BIOLOGY, 2025,
  • [14] Machine Learning in Dentistry: A Scoping Review
    Arsiwala-Scheppach, Lubaina T.
    Chaurasia, Akhilanand
    Mueller, Anne
    Krois, Joachim
    Schwendicke, Falk
    JOURNAL OF CLINICAL MEDICINE, 2023, 12 (03)
  • [15] Machine learning-supported manufacturing: a review and directions for future research
    Ordek, Baris
    Borgianni, Yuri
    Coatanea, Eric
    PRODUCTION AND MANUFACTURING RESEARCH-AN OPEN ACCESS JOURNAL, 2024, 12 (01):
  • [16] Automated Machine Learning for Industrial Applications - Challenges and Opportunities
    Bachinger, Florian
    Zenisek, Jan
    Affenzeller, Michael
    5TH INTERNATIONAL CONFERENCE ON INDUSTRY 4.0 AND SMART MANUFACTURING, ISM 2023, 2024, 232 : 1701 - 1710
  • [17] AI in Cytopathology: A Narrative Umbrella Review on Innovations, Challenges, and Future Directions
    Giansanti, Daniele
    JOURNAL OF CLINICAL MEDICINE, 2024, 13 (22)
  • [18] Machine Learning for Prediction of the International Roughness Index on Flexible Pavements: A Review, Challenges, and Future Directions
    Tamagusko, Tiago
    Ferreira, Adelino
    INFRASTRUCTURES, 2023, 8 (12)
  • [19] A Review on Challenges and Future Research Directions for Machine Learning-Based Intrusion Detection System
    Thakkar, Ankit
    Lohiya, Ritika
    ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2023, 30 (07) : 4245 - 4269
  • [20] Advancements and Challenges in Machine Learning: A Comprehensive Review of Models, Libraries, Applications, and Algorithms
    Tufail, Shahid
    Riggs, Hugo
    Tariq, Mohd
    Sarwat, Arif I.
    ELECTRONICS, 2023, 12 (08)