MIFNet: Multi-Scale Interaction Fusion Network for Remote Sensing Image Change Detection

被引:0
|
作者
Xie, Weiying [1 ]
Shao, Wenjie [1 ]
Li, Daixun [1 ]
Li, Yunsong [1 ]
Fang, Leyuan [2 ]
机构
[1] Xidian Univ, State Key Lab Integrated Serv Networks, Xidian 710071, Peoples R China
[2] Hunan Univ, Coll Elect & Informat Engn, Changsha 410082, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature extraction; Remote sensing; Data mining; Semantics; Attention mechanisms; Transformers; Cross layer design; Circuits and systems; Accuracy; Fuses; Change detection; remote sensing; attention; convolutional neural networks; multi-scale;
D O I
10.1109/TCSVT.2024.3494820
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Change Detection (CD) is a crucial and challenging task in remote sensing observations. Despite the remarkable progress driven by deep learning in remote sensing change detection, several challenges remain regarding global information representation and efficient interaction. The traditional Siamese network structure, which extracts features from bitemporal images using a weight-sharing network and generates a change map, but often neglects phase interaction information between images. Additionally, multi-scale feature fusion methods frequently use FPN-like structures, leading to lossy cross-layer information transmission and hindering the effective utilization of features. To address these issues, we propose a multi-scale interaction fusion network (MIFNet) that fuses bitemporal features at an early stage, using deep supervision techniques to guide early fusion features in obtaining abundant semantic representation of changes, also we construct a dual complementary attention module (DCA) to capture temporal information. Furthermore, we introduce a collection-allocation fusion mechanism, which is different from previous layer-by-layer fusion methods since it collects global information and embeds features at different levels to achieve effective cross-layer information transmission and promote global semantic feature representation. Extensive experiments demonstrate that our method achieves competitive results on the LEVIR-CD+ dataset, outperforming other advanced methods on both the LEVIR-CD and SYSU-CD datasets, with F1 improved by 0.96% and 0.61%, respectively, compared to the most advanced models.
引用
收藏
页码:2725 / 2739
页数:15
相关论文
共 50 条
  • [21] Scene classification of remote sensing image based on deep network and multi-scale features fusion
    Yang, Zhou
    Mu, Xiao-dong
    Zhao, Feng-an
    OPTIK, 2018, 171 : 287 - 293
  • [22] Remote sensing image semantic segmentation network based on multi-scale feature enhancement fusion
    Wang, Feiting
    Zhang, Yuan
    Hu, Qiongqiong
    Zhu, Yu
    GEOCARTO INTERNATIONAL, 2024, 39 (01)
  • [23] SGMFNet: a remote sensing image object detection network based on spatial global attention and multi-scale feature fusion
    Gong, Xiaolin
    Liu, Daqing
    REMOTE SENSING LETTERS, 2024, 15 (05) : 466 - 477
  • [24] Object Detection of Remote Sensing Image Based on Multi-Scale Feature Fusion and Attention Mechanism
    Du, Zuoqiang
    Liang, Yuan
    IEEE ACCESS, 2024, 12 : 8619 - 8632
  • [25] A Multi-Feature Fusion and Attention Network for Multi-Scale Object Detection in Remote Sensing Images
    Cheng, Yong
    Wang, Wei
    Zhang, Wenjie
    Yang, Ling
    Wang, Jun
    Ni, Huan
    Guan, Tingzhao
    He, Jiaxin
    Gu, Yakang
    Tran, Ngoc Nguyen
    REMOTE SENSING, 2023, 15 (08)
  • [26] GCN-based multi-scale dual fusion for remote sensing building change detection
    Liang, Shike
    Hua, Zhen
    Li, Jinjiang
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2023, 44 (03) : 953 - 980
  • [27] OBJECT-ORIENTED CHANGE DETECTION FOR REMOTE SENSING IMAGES BASED ON MULTI-SCALE FUSION
    Feng, Wenqing
    Sui, Haigang
    Tu, Jihui
    XXIII ISPRS CONGRESS, COMMISSION VII, 2016, 41 (B7): : 483 - 491
  • [28] Multi-Scale Context Fusion Network for Urban Solid Waste Detection in Remote Sensing Images
    Li, Yangke
    Zhang, Xinman
    REMOTE SENSING, 2024, 16 (19)
  • [29] MULTI-SCALE FEATURE FUSION NETWORK FOR OBJECT DETECTION IN VHR OPTICAL REMOTE SENSING IMAGES
    Zhang, Wenhua
    Jiao, Licheng
    Liu, Xu
    Liu, Jia
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 330 - 333
  • [30] MFATNet: Multi-Scale Feature Aggregation via Transformer for Remote Sensing Image Change Detection
    Mao, Zan
    Tong, Xinyu
    Luo, Ze
    Zhang, Honghai
    REMOTE SENSING, 2022, 14 (21)