MIFNet: Multi-Scale Interaction Fusion Network for Remote Sensing Image Change Detection

被引:0
作者
Xie, Weiying [1 ]
Shao, Wenjie [1 ]
Li, Daixun [1 ]
Li, Yunsong [1 ]
Fang, Leyuan [2 ]
机构
[1] Xidian Univ, State Key Lab Integrated Serv Networks, Xidian 710071, Peoples R China
[2] Hunan Univ, Coll Elect & Informat Engn, Changsha 410082, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature extraction; Remote sensing; Data mining; Semantics; Attention mechanisms; Transformers; Cross layer design; Circuits and systems; Accuracy; Fuses; Change detection; remote sensing; attention; convolutional neural networks; multi-scale;
D O I
10.1109/TCSVT.2024.3494820
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Change Detection (CD) is a crucial and challenging task in remote sensing observations. Despite the remarkable progress driven by deep learning in remote sensing change detection, several challenges remain regarding global information representation and efficient interaction. The traditional Siamese network structure, which extracts features from bitemporal images using a weight-sharing network and generates a change map, but often neglects phase interaction information between images. Additionally, multi-scale feature fusion methods frequently use FPN-like structures, leading to lossy cross-layer information transmission and hindering the effective utilization of features. To address these issues, we propose a multi-scale interaction fusion network (MIFNet) that fuses bitemporal features at an early stage, using deep supervision techniques to guide early fusion features in obtaining abundant semantic representation of changes, also we construct a dual complementary attention module (DCA) to capture temporal information. Furthermore, we introduce a collection-allocation fusion mechanism, which is different from previous layer-by-layer fusion methods since it collects global information and embeds features at different levels to achieve effective cross-layer information transmission and promote global semantic feature representation. Extensive experiments demonstrate that our method achieves competitive results on the LEVIR-CD+ dataset, outperforming other advanced methods on both the LEVIR-CD and SYSU-CD datasets, with F1 improved by 0.96% and 0.61%, respectively, compared to the most advanced models.
引用
收藏
页码:2725 / 2739
页数:15
相关论文
共 65 条
  • [1] A TRANSFORMER-BASED SIAMESE NETWORK FOR CHANGE DETECTION
    Bandara, Wele Gedara Chaminda
    Patel, Vishal M.
    [J]. 2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 207 - 210
  • [2] A theoretical framework for unsupervised change detection based on change vector analysis in the polar domain
    Bovolo, Francesca
    Bruzzone, Lorenzo
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2007, 45 (01): : 218 - 236
  • [3] Automatic analysis of the difference image for unsupervised change detection
    Bruzzone, L
    Prieto, DF
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2000, 38 (03): : 1171 - 1182
  • [4] Bustos C., 2011, Proceedings of the 2011 6th International Workshop on the Analysis of Multi-temporal Remote Sensing Images (Multi-Temp), P197, DOI 10.1109/Multi-Temp.2011.6005082
  • [5] Remote Sensing Image Change Detection With Transformers
    Chen, Hao
    Qi, Zipeng
    Shi, Zhenwei
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [6] A Spatial-Temporal Attention-Based Method and a New Dataset for Remote Sensing Image Change Detection
    Chen, Hao
    Shi, Zhenwei
    [J]. REMOTE SENSING, 2020, 12 (10)
  • [7] Change Detection in Multisource VHR Images via Deep Siamese Convolutional Multiple-Layers Recurrent Neural Network
    Chen, Hongruixuan
    Wu, Chen
    Du, Bo
    Zhang, Liangpei
    Wang, Le
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (04): : 2848 - 2864
  • [8] DASNet: Dual Attentive Fully Convolutional Siamese Networks for Change Detection in High-Resolution Satellite Images
    Chen, Jie
    Yuan, Ziyang
    Peng, Jian
    Chen, Li
    Huang, Haozhe
    Zhu, Jiawei
    Liu, Yu
    Li, Haifeng
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 1194 - 1206
  • [9] FCCDN: Feature constraint network for VHR image change detection
    Chen, Pan
    Zhang, Bing
    Hong, Danfeng
    Chen, Zhengchao
    Yang, Xuan
    Li, Baipeng
    [J]. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2022, 187 : 101 - 119
  • [10] Daudt RC, 2018, IEEE IMAGE PROC, P4063, DOI 10.1109/ICIP.2018.8451652