Computational study of characteristics of atmospheric pressure glow discharge in helium

被引:0
作者
Islamov, Gubad [1 ]
Eylenceoglu, Ender [1 ]
Rafatov, Ismail [1 ,2 ]
机构
[1] Middle East Tech Univ, Dept Phys, TR-06800 Ankara, Turkiye
[2] Harbin Inst Technol, Sch Phys, Harbin 150001, Heilongjiang, Peoples R China
关键词
gas discharge; helium; atmospheric pressure plasma; glow discharge; cathode spots; pattern formation; numerical simulation; SELF-ORGANIZATION; MODEL; BREAKDOWN;
D O I
10.1088/1361-6595/adb786
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Numerical analysis of an atmospheric pressure glow discharge (APGD) in helium is carried out. Numerical models are spatially one- and two-dimensional and based on drift-diffusion theory of gas discharges. On the basis of the current-voltage and current density-voltage characteristic curves, the effects of the temperature regime on the cathode surface (cooled vs uncooled), the value of the secondary electron emission coefficient, and the thermal diffusion on the discharge parameters are studied. The possible transition of the discharge to an obstructed mode with gas heating is investigated. An analysis of the formation of normal APGD was carried out, which revealed good agreement with experimental data. The spontaneous emergence of cathode spots is illustrated and discussed.
引用
收藏
页数:16
相关论文
共 58 条
[21]   2d-Model of Glow Discharge Atmospheric Pressure Plasma in Helium Formed after Spark Breakdown: Calculation of the Electrophysical and Thermodynamic Parameters [J].
Demkin, V. P. ;
Melnichuk, S., V ;
Postnikov, A., V .
RUSSIAN PHYSICS JOURNAL, 2020, 62 (10) :1890-1898
[22]   Generating low-temperature glow discharge plasma in the atmospheric pressure helium after spark breakdown: Modelling plasma with the prescribed properties for biomedical applications [J].
Demkin, V. P. ;
Melnichuk, S. V. ;
Postnikov, A. V. .
PHYSICS OF PLASMAS, 2018, 25 (08)
[23]   Applied plasma medicine [J].
Fridman, Gregory ;
Friedman, Gary ;
Gutsol, Alexander ;
Shekhter, Anatoly B. ;
Vasilets, Victor N. ;
Fridman, Alexander .
PLASMA PROCESSES AND POLYMERS, 2008, 5 (06) :503-533
[24]  
Golant V.E., 1980, FUNDAMENTALS PLASMA
[25]   Modelling of the homogeneous barrier discharge in helium at atmospheric pressure [J].
Golubovskii, YB ;
Maiorov, VA ;
Behnke, J ;
Behnke, JF .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2003, 36 (01) :39-49
[26]   Why the local-mean-energy approximation should be used in hydrodynamic plasma descriptions instead of the local-field approximation [J].
Grubert, G. K. ;
Becker, M. M. ;
Loffhagen, D. .
PHYSICAL REVIEW E, 2009, 80 (03)
[27]   Boundary conditions in fluid models of gas discharges [J].
Hagelaar, GJM ;
de Hoog, FJ ;
Kroesen, GMW .
PHYSICAL REVIEW E, 2000, 62 (01) :1452-1454
[28]   Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models [J].
Hagelaar, GJM ;
Pitchford, LC .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2005, 14 (04) :722-733
[29]   Effect of different elementary processes on the breakdown in low-pressure helium gas [J].
Hartmann, P ;
Donkó, Z ;
Bánó, G ;
Szalai, L ;
Rózsa, K .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2000, 9 (02) :183-190
[30]   Temperature resolved modeling of plasma abatement of perfluorinated compounds [J].
Kiehlbauch, MW ;
Graves, DB .
JOURNAL OF APPLIED PHYSICS, 2001, 89 (04) :2047-2057