SVDTree: Semantic Voxel Diffusion for Single Image Tree Reconstruction

被引:1
作者
Li, Yuan [1 ]
Liu, Zhihao [2 ]
Benes, Bedrich [3 ]
Zhang, Xiaopeng [1 ,4 ]
Guo, Jianwei [1 ,4 ]
机构
[1] Chinese Acad Sci, Inst Automat, MAIS, Beijing, Peoples R China
[2] Univ Tokyo, Tokyo, Japan
[3] Purdue Univ, Comp Sci, W Lafayette, IN 47907 USA
[4] Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing, Peoples R China
来源
2024 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2024 | 2024年
基金
中国国家自然科学基金;
关键词
D O I
10.1109/CVPR52733.2024.00449
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Efficiently representing and reconstructing the 3D geometry of biological trees remains a challenging problem in computer vision and graphics. We propose a novel approach for generating realistic tree models from single-view photographs. We cast the 3D information inference problem to a semantic voxel diffusion process, which converts an input image of a tree to a novel Semantic Voxel Structure (SVS) in 3D space. The SVS encodes the geometric appearance and semantic structural information (e.g., classifying trunks, branches, and leaves), which retains the intricate internal tree features. Tailored to the SVS, we present SVDTree a new hybrid tree modeling approach by combining structure-oriented branch reconstruction and self-organization-based foliage reconstruction. We validate SVDTree by using images from both synthetic and real trees. The comparison results show that our approach can better preserve tree details and achieve more realistic and accurate reconstruction results than previous methods.
引用
收藏
页码:4692 / 4702
页数:11
相关论文
共 70 条
[1]  
[Anonymous], 2013, ACM T GRAPHIC, DOI DOI 10.1145/2461912.2461952
[2]   Single-picture reconstruction and rendering of trees for plausible vegetation synthesis [J].
Argudo, Oscar ;
Chica, Antonio ;
Andujar, Carlos .
COMPUTERS & GRAPHICS-UK, 2016, 57 :55-67
[3]   The Auto Arborist Dataset: A Large-Scale Benchmark for Multiview Urban Forest Monitoring Under Domain Shift [J].
Beery, Sara ;
Wu, Guanhang ;
Edwards, Trevor ;
Pavetic, Filip ;
Majewski, Bo ;
Mukherjee, Shreyasee ;
Chan, Stanley ;
Morgan, John ;
Rathod, Vivek ;
Huang, Jonathan .
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, :21262-21275
[4]   Sampling forests with terrestrial laser scanning [J].
Boucher, Peter B. ;
Paynter, Ian ;
Orwig, David A. ;
Valencius, Ilan ;
Schaaf, Crystal .
ANNALS OF BOTANY, 2021, 128 (06) :689-707
[5]   End-to-End Object Detection with Transformers [J].
Carion, Nicolas ;
Massa, Francisco ;
Synnaeve, Gabriel ;
Usunier, Nicolas ;
Kirillov, Alexander ;
Zagoruyko, Sergey .
COMPUTER VISION - ECCV 2020, PT I, 2020, 12346 :213-229
[6]   Efficient Geometry-aware 3D Generative Adversarial Networks [J].
Chan, Eric R. ;
Lin, Connor Z. ;
Chan, Matthew A. ;
Nagano, Koki ;
Pan, Boxiao ;
de Mello, Shalini ;
Gallo, Orazio ;
Guibas, Leonidas ;
Tremblay, Jonathan ;
Khamis, Sameh ;
Karras, Tero ;
Wetzstein, Gordon .
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, :16102-16112
[7]   pi-GAN: Periodic Implicit Generative Adversarial Networks for 3D-Aware Image Synthesis [J].
Chan, Eric R. ;
Monteiro, Marco ;
Kellnhofer, Petr ;
Wu, Jiajun ;
Wetzstein, Gordon .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :5795-5805
[8]   Unsupervised Learning of Fine Structure Generation for 3D Point Clouds by 2D Projection Matching [J].
Chen, Chao ;
Han, Zhizhong ;
Liu, Yu-Shen ;
Zwicker, Matthias .
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, :12446-12457
[9]   Effects of proton pump inhibitor on gastroesophageal varices in patients with cirrhosis: A randomized controlled trial from China [J].
Chen, Xiaoning ;
Zhou, Tao ;
Zhou, Ting ;
Li, Yueyue ;
Sun, Xin ;
Cheng, Baoquan ;
Zhong, Ning ;
Lu, Xuefeng ;
Gao, Yanjing .
PORTAL HYPERTENSION & CIRRHOSIS, 2023, 2 (01) :1-8
[10]   Learning Implicit Fields for Generative Shape Modeling [J].
Chen, Zhiqin ;
Zhang, Hao .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :5932-5941