3D-printed geogrids' tensile performance: impact of filament type

被引:0
|
作者
Ok, Bahadir [1 ]
Unverdi, Murteda [2 ]
Seyedzavvar, Mirsadegh [3 ]
Boga, Cem [3 ]
Sarici, Talha [4 ]
机构
[1] Adana Alparslan Turkes Sci & Technol Univ, Dept Civil Engn, Adana, Turkiye
[2] Bursa Uludag Univ, Dept Civil Engn, Bursa, Turkiye
[3] Adana Alparslan Turkes Sci & Technol Univ, Dept Mech Engn, Adana, Turkiye
[4] Inonu Univ, Dept Civil Engn, Malatya, Turkiye
关键词
Geogrid; Soil reinforcement; 3D printing; Tensile tests; Tensile modulus; SOIL;
D O I
10.1108/RPJ-09-2024-0403
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Purpose - This study aims to explore the potential of three-dimensional (3D) printing technology to enhance geogrid production, focusing on the influence of filament type on tensile performance. Geogrids, which reinforced soils by forming interlocking mechanisms with soil grains, were manufactured using polypropylene (PP) and polyethylene terephthalate glycol-modified (PET-G) filaments. The printability of these materials, along with thermoplastic polyurethane (TPU) and high-density polyethylene (HDPE), was initially assessed, revealing challenges with TPU and HDPE. Design/methodology/approach - Tensile tests, conducted on both single-rib and multirib samples, compared the mechanical performance of the 3D-printed geogrids against a factory-made PP geogrid. Findings - The results indicated that while the factory-made geogrid demonstrated superior tensile strength and ductility, 3D-printed geogrids, particularly those made with PP, exhibited promising tensile characteristics that could be suitable for specific applications. However, 3D-printed PET-G geogrids showed higher tensile strength but were more brittle. The findings suggest that although 3D printing offers a viable method for geogrid production, further optimization is required to achieve performance levels comparable to traditional manufacturing methods. Originality/value - While existing research on 3D-printed geogrids exists, studies comparing them with their factory-produced counterparts are currently limited. This research provides a unique comparison of the tensile modulus, elongation and tensile strength of factory-made geogrids and 3D-printed geogrids produced with different filaments.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] The impact of defects on tensile properties of 3D printed parts manufactured by fused filament fabrication
    Fayazbakhsh, Kazem
    Movahedi, Mobina
    Kalman, Jordan
    MATERIALS TODAY COMMUNICATIONS, 2019, 18 : 140 - 148
  • [2] A comparison of tensile failure in 3D-printed and natural sandstone
    Vogler, D.
    Walsh, S. D. C.
    Dombrovski, E.
    Perras, M. A.
    ENGINEERING GEOLOGY, 2017, 226 : 221 - 235
  • [3] Compressive and Tensile Behavior of 3D-Printed and Natural Sandstones
    Matthew A. Perras
    Daniel Vogler
    Transport in Porous Media, 2019, 129 : 559 - 581
  • [4] Compressive and Tensile Behavior of 3D-Printed and Natural Sandstones
    Perras, Matthew A.
    Vogler, Daniel
    TRANSPORT IN POROUS MEDIA, 2019, 129 (02) : 559 - 581
  • [5] IMPACT STRENGTH OF 3D-PRINTED POLYCARBONATE
    de Vries, Hans
    Engelen, Roy
    Janssen, Esther
    FACTA UNIVERSITATIS-SERIES ELECTRONICS AND ENERGETICS, 2020, 33 (01) : 105 - 117
  • [6] Fabrication and optimisation of a fused filament 3D-printed microfluidic platform
    Tothill, A. M.
    Partridge, M.
    James, S. W.
    Tatam, R. P.
    JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2017, 27 (03)
  • [7] Dipole Antennas 3D-printed from Conductive Thermoplastic Filament
    Khan, Zahangir
    He, Han
    Chen, Xiaochen
    Virkki, Johanna
    2020 IEEE 8TH ELECTRONICS SYSTEM-INTEGRATION TECHNOLOGY CONFERENCE (ESTC), 2020,
  • [8] Characterization of 3D-printed filament yarns using various parameters
    Kim, Minseo
    Kim, Han Seong
    JOURNAL OF THE TEXTILE INSTITUTE, 2025, 116 (03) : 409 - 415
  • [9] Fracture of 3D-printed micro-tensile specimens: filament-scale geometry-induced anisotropy
    Allum, James
    Gleadall, Andrew
    Silberschmidt, Vadim V.
    1ST VIRTUAL EUROPEAN CONFERENCE ON FRACTURE - VECF1, 2020, 28 : 591 - 601
  • [10] Finite Element Modelling and Experimental Investigation of Tensile, Flexural, and Impact Behaviour of 3D-Printed Polyamide
    Mishra P.K.
    Karthik B.
    Jagadesh T.
    Journal of The Institution of Engineers (India): Series D, 2024, 105 (01) : 275 - 283