Discovery of a Compound That Inhibits IRE1α S-Nitrosylation and Preserves the Endoplasmic Reticulum Stress Response under Nitrosative Stress

被引:0
作者
Kurogi, Haruna [1 ]
Takasugi, Nobumasa [1 ]
Kubota, Sho [1 ]
Kumar, Ashutosh [2 ,3 ]
Suzuki, Takehiro [4 ]
Dohmae, Naoshi [4 ]
Sawada, Daisuke [5 ]
Zhang, Kam Y. J. [2 ,6 ]
Uehara, Takashi [1 ]
机构
[1] Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Med Pharmacol, Okayama 7008530, Japan
[2] RIKEN, Ctr Biosyst Dynam Res, Lab Struct Bioinformat, Yokohama, Kanagawa 2300045, Japan
[3] Zurich Univ Appl Sci ZHAW, Inst Chem & Biochem, Competence Ctr Biocatalysis, CH-8820 Wadenswil, Switzerland
[4] RIKEN, Technol Platform Div, Biomol Characterizat Unit, Ctr Sustainable Resource Sci, Wako, Saitama 3510198, Japan
[5] Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Fine Organ Synth, Okayama 7008530, Japan
[6] RIKEN, Ctr Biosyst Dynam Res, Lab Computat Mol Design, Yokohama, Kanagawa 2300045, Japan
关键词
ACCURATE DOCKING; ER STRESS; HOT-SPOTS; PROTEIN; IDENTIFICATION; GLIDE; ACTIVATION; ATF6; IRE1;
D O I
10.1021/acschembio.4c00403
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Inositol-requiring enzyme 1 alpha (IRE1 alpha) is a sensor of endoplasmic reticulum (ER) stress and drives ER stress response pathways. Activated IRE1 alpha exhibits RNase activity and cleaves mRNA encoding X-box binding protein 1, a transcription factor that induces the expression of genes that maintain ER proteostasis for cell survival. Previously, we showed that IRE1 alpha undergoes S-nitrosylation, a post-translational modification induced by nitric oxide (NO), resulting in reduced RNase activity. Therefore, S-nitrosylation of IRE1 alpha compromises the response to ER stress, making cells more vulnerable. We conducted virtual screening and cell-based validation experiments to identify compounds that inhibit the S-nitrosylation of IRE1 alpha by targeting nitrosylated cysteine residues. We ultimately identified a compound (1ACTA) that selectively inhibits the S-nitrosylation of IRE1 alpha and prevents the NO-induced reduction of RNase activity. Furthermore, 1ACTA reduces the rate of NO-induced cell death. Our research identified S-nitrosylation as a novel target for drug development for IRE1 alpha and provides a suitable screening strategy.
引用
收藏
页码:2429 / 2437
页数:9
相关论文
共 36 条
[1]   Polysulfide Na2S4 regulates the activation of PTEN/Akt/CREB signaling and cytotoxicity mediated by 1,4-naphthoquinone through formation of sulfur adducts [J].
Abiko, Yumi ;
Shinkai, Yasuhiro ;
Unoki, Takamitsu ;
Hirose, Reiko ;
Uehara, Takashi ;
Kumagai, Yoshito .
SCIENTIFIC REPORTS, 2017, 7
[2]   Structure of the Ire1 autophosphorylation complex and implications for the unfolded protein response [J].
Ali, Maruf M. U. ;
Bagratuni, Tina ;
Davenport, Emma L. ;
Nowak, Piotr R. ;
Silva-Santisteban, M. Cris ;
Hardcastle, Anthea ;
McAndrews, Craig ;
Rowlands, Martin G. ;
Morgan, Gareth J. ;
Aherne, Wynne ;
Collins, Ian ;
Davies, Faith E. ;
Pearl, Laurence H. .
EMBO JOURNAL, 2011, 30 (05) :894-905
[3]   TMBIM6 regulates redox-associated posttranslational modifications of IRE1α and ER stress response failure in aging mice and humans [J].
Bhattarai, Kashi Raj ;
Kim, Hyun-Kyoung ;
Chaudhary, Manoj ;
Rashid, Mohammad Mamun Ur ;
Kim, Jisun ;
Kim, Hyung-Ryong ;
Chae, Han-Jung .
REDOX BIOLOGY, 2021, 47
[4]   Fragment-based identification of druggable 'hot spots' of proteins using Fourier domain correlation techniques [J].
Brenke, Ryan ;
Kozakov, Dima ;
Chuang, Gwo-Yu ;
Beglov, Dmitri ;
Hall, David ;
Landon, Melissa R. ;
Mattos, Carla ;
Vajda, Sandor .
BIOINFORMATICS, 2009, 25 (05) :621-627
[5]   ATP-competitive partial antagonists of the IRE1α RNase segregate outputs of the UPR [J].
Feldman, Hannah C. ;
Ghosh, Rajarshi ;
Auyeung, Vincent C. ;
Mueller, James L. ;
Kim, Jae-Hong ;
Potter, Zachary E. ;
Vidadala, Venkata N. ;
Perera, B. Gayani K. ;
Olivier, Alina ;
Backes, Bradley J. ;
Zikherman, Julie ;
Papa, Feroz R. ;
Maly, Dustin J. .
NATURE CHEMICAL BIOLOGY, 2021, 17 (11) :1148-1156
[6]   Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy [J].
Friesner, RA ;
Banks, JL ;
Murphy, RB ;
Halgren, TA ;
Klicic, JJ ;
Mainz, DT ;
Repasky, MP ;
Knoll, EH ;
Shelley, M ;
Perry, JK ;
Shaw, DE ;
Francis, P ;
Shenkin, PS .
JOURNAL OF MEDICINAL CHEMISTRY, 2004, 47 (07) :1739-1749
[7]   Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes [J].
Friesner, Richard A. ;
Murphy, Robert B. ;
Repasky, Matthew P. ;
Frye, Leah L. ;
Greenwood, Jeremy R. ;
Halgren, Thomas A. ;
Sanschagrin, Paul C. ;
Mainz, Daniel T. .
JOURNAL OF MEDICINAL CHEMISTRY, 2006, 49 (21) :6177-6196
[8]   Small molecule strategies to harness the unfolded protein response: where do we go from here? [J].
Grandjean, Julia M. D. ;
Wiseman, R. Luke .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2020, 295 (46) :15692-15711
[9]   Glide: A new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening [J].
Halgren, TA ;
Murphy, RB ;
Friesner, RA ;
Beard, HS ;
Frye, LL ;
Pollard, WT ;
Banks, JL .
JOURNAL OF MEDICINAL CHEMISTRY, 2004, 47 (07) :1750-1759
[10]   Identifying and Characterizing Binding Sites and Assessing Druggability [J].
Halgren, Thomas A. .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2009, 49 (02) :377-389