Deciphering the Transcriptional Metabolic Profile of Adipose-Derived Stem Cells During Osteogenic Differentiation and Epigenetic Drug Treatment

被引:0
|
作者
Gerini, Giulia [1 ]
Traversa, Alice [2 ]
Cece, Fabrizio [1 ]
Cassandri, Matteo [1 ]
Pontecorvi, Paola [1 ]
Camero, Simona [2 ]
Nannini, Giulia [3 ]
Romano, Enrico [4 ]
Marampon, Francesco [5 ]
Venneri, Mary Anna [1 ]
Ceccarelli, Simona [1 ]
Angeloni, Antonio [1 ]
Amedei, Amedeo [3 ]
Marchese, Cinzia [1 ]
Megiorni, Francesca [1 ]
机构
[1] Sapienza Univ Rome, Dept Expt Med, I-00161 Rome, Italy
[2] Link Campus Univ, Dept Life Sci Hlth & Hlth Profess, I-00165 Rome, Italy
[3] Univ Florence, Dept Expt & Clin Med, I-50121 Florence, Italy
[4] Sapienza Univ Rome, Dept Sense Organs, I-00161 Rome, Italy
[5] Sapienza Univ Rome, Dept Radiol Oncol & Pathol Sci, I-00161 Rome, Italy
关键词
adipose-derived stem cells; osteogenic differentiation; DNA methyltransferase inhibitor; metabolic pathways; DNA METHYLTRANSFERASE INHIBITORS; MECHANISMS; MANAGEMENT; FRACTURES; GENES;
D O I
10.3390/cells14020135
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Adipose-derived mesenchymal stem cells (ASCs) are commonly employed in clinical treatment for various diseases due to their ability to differentiate into multi-lineage and anti-inflammatory/immunomodulatory properties. Preclinical studies support their use for bone regeneration, healing, and the improvement of functional outcomes. However, a deeper understanding of the molecular mechanisms underlying ASC biology is crucial to identifying key regulatory pathways that influence differentiation and enhance regenerative potential. In this study, we employed the NanoString nCounter technology, an advanced multiplexed digital counting method of RNA molecules, to comprehensively characterize differentially expressed transcripts involved in metabolic pathways at distinct time points in osteogenically differentiating ASCs treated with or without the pan-DNMT inhibitor RG108. In silico annotation and gene ontology analysis highlighted the activation of ethanol oxidation, ROS regulation, retinoic acid metabolism, and steroid hormone metabolism, as well as in the metabolism of lipids, amino acids, and nucleotides, and pinpointed potential new osteogenic drivers like AOX1 and ADH1A. RG108-treated cells, in addition to the upregulation of the osteogenesis-related markers RUNX2 and ALPL, showed statistically significant alterations in genes implicated in transcriptional control (MYCN, MYB, TP63, and IRF1), ethanol oxidation (ADH1C, ADH4, ADH6, and ADH7), and glucose metabolism (SLC2A3). These findings highlight the complex interplay of the metabolic, structural, and signaling pathways that orchestrate osteogenic differentiation. Furthermore, this study underscores the potential of epigenetic drugs like RG108 to enhance ASC properties, paving the way for more effective and personalized cell-based therapies for bone regeneration.
引用
收藏
页数:27
相关论文
共 50 条
  • [1] The role of epigenetic modifications in the osteogenic differentiation of adipose-derived stem cells
    Chen, Ruixin
    Ren, Lin
    Cai, Qingwei
    Zou, Yang
    Fuo, Qiang
    Ma, Yuanyuan
    CONNECTIVE TISSUE RESEARCH, 2019, 60 (06) : 507 - 520
  • [2] miRNA expression profile during osteogenic differentiation of human adipose-derived stem cells
    Zhang, Zi-ji
    Zhang, Hao
    Kang, Yan
    Sheng, Pu-yi
    Ma, Yuan-chen
    Yang, Zi-bo
    Zhang, Zhi-qi
    Fu, Ming
    He, Ai-shan
    Liao, Wei-ming
    JOURNAL OF CELLULAR BIOCHEMISTRY, 2012, 113 (03) : 888 - 898
  • [3] Review of the Pathways Involved in the Osteogenic Differentiation of Adipose-Derived Stem Cells
    Asserson, Derek B.
    Orbay, Hakan
    Sahar, David E.
    JOURNAL OF CRANIOFACIAL SURGERY, 2019, 30 (03) : 703 - 708
  • [4] Adipose-derived stem cells: An appropriate selection for osteogenic differentiation
    Shafaei, Hajar
    Kalarestaghi, Hossein
    JOURNAL OF CELLULAR PHYSIOLOGY, 2020, 235 (11) : 8371 - 8386
  • [5] Asperosaponin VI stimulates osteogenic differentiation of rat adipose-derived stem cells
    Ding, Xingpo
    Li, Wuyin
    Chen, Dengshan
    Zhang, Chuanwei
    Wang, Lei
    Zhang, Hong
    Qin, Na
    Sun, Yongqiang
    REGENERATIVE THERAPY, 2019, 11 : 17 - 24
  • [6] Epigenetic regulation of human adipose-derived stem cells differentiation
    Kristina Daniunaite
    Inga Serenaite
    Roberta Misgirdaite
    Juozas Gordevicius
    Ausra Unguryte
    Sandrine Fleury-Cappellesso
    Eiva Bernotiene
    Sonata Jarmalaite
    Molecular and Cellular Biochemistry, 2015, 410 : 111 - 120
  • [7] Epigenetic regulation of human adipose-derived stem cells differentiation
    Daniunaite, Kristina
    Serenaite, Inga
    Misgirdaite, Roberta
    Gordevicius, Juozas
    Unguryte, Ausra
    Fleury-Cappellesso, Sandrine
    Bernotiene, Eiva
    Jarmalaite, Sonata
    MOLECULAR AND CELLULAR BIOCHEMISTRY, 2015, 410 (1-2) : 111 - 120
  • [8] Effects of titania nanotube surfaces on osteogenic differentiation of human adipose-derived stem cells
    Cowden, Kari
    Dias-Netipanyj, Marcela Ferreira
    Popat, Ketul C.
    NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE, 2019, 17 : 380 - 390
  • [9] Superparamagnetic iron oxide promotes osteogenic differentiation of rat adipose-derived stem cells
    Xiao, Hai-Tao
    Wang, Lei
    Yu, Bin
    INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL MEDICINE, 2015, 8 (01): : 698 - 705
  • [10] Osteogenic Differentiation from Mouse Adipose-Derived Stem Cells and Bone Marrow Stem Cells
    Huang, Cheng-Pu
    Hsu, Keng-Chia
    Wu, Chean-Ping
    Wu, Hsi-Tien
    CHINESE JOURNAL OF PHYSIOLOGY, 2022, 65 (01): : 21 - 29