Magmatic-hydrothermal processes forming the Meishan iron oxide-apatite deposit in the Ningwu volcanic basin (Eastern China): Insights from trace element and Fe-O isotope data of magnetite

被引:0
作者
Li, Wan-Ting [1 ,2 ]
Zhang, Chuan-Yu [3 ]
Wen, Guang [4 ,5 ]
Hu, Hao [4 ,5 ]
Zhao, Xin-Fu [4 ,5 ]
Li, Jian-Wei [4 ,5 ]
机构
[1] Yunnan Univ, Sch Earth Sci, Kunming 650500, Peoples R China
[2] Yunnan Int Joint Lab Crit Mineral Resource, Kunming 650500, Peoples R China
[3] Yunnan Inst Geol Survey, MNR, Key Lab Sanjiang Metallogeny & Resources Explorat, Kunming 650216, Peoples R China
[4] China Univ Geosci, State Key Lab Geol Proc & Mineral Resources, Wuhan 430074, Peoples R China
[5] China Univ Geosci, Sch Earth Resources, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
Magnetite; Meishan IOA deposit; Trace element; Fe-O isotopes; Magmatic-hydrothermal processes; LA-ICP-MS; FIELD EVIDENCE BEARING; LOWER YANGTZE-RIVER; KIRUNA-TYPE; EL-LACO; LIQUID IMMISCIBILITY; SOUTHEAST MISSOURI; SILICATE MELTS; HOST ROCKS; ORE;
D O I
10.1016/j.oregeorev.2025.106576
中图分类号
P5 [地质学];
学科分类号
0709 ; 081803 ;
摘要
Iron oxide-apatite (IOA) deposits are an important source for Fe that is variably accompanied by other elements such as P, Co, and REE. Still, their origin remains enigmatic, with existing models highlighting the role of magmatic, liquid immiscibility, magmatic hydrothermal processes, or a combination of those processes. Here we present new trace element and Fe-O isotope data of magnetite from the Meishan IOA deposit (338Mt iron-oxide ores) in Eastern China to further constrain the ore genesis. The Meishan deposit consists of disseminated, massive, and vein-type iron ores that are hosted within the Early Cretaceous andesitic rocks and, less significantly, in a coeval porphyritic gabbro-diorite intrusion. Petrographic and textural studies reveal six types of magnetite from the gabbro-diorite porphyry and various types of iron ores, and many of them show dissolutionreprecipitation textures. Trace element concentrations of magnetite, notably Ti, Al, Ga, and V, progressively decrease upwards, indicating a cooling trend likely from magmatic to hydrothermal conditions. A similar decreasing trend is also observed from magmatic magnetite in the ore-hosting rocks through massive and brecciated to the vein-type ores. Magnetite from the vein-type ores has delta 56Fe values of 0.14-0.41 %o and delta 18O values of 4.38-5.53 %o, which are similar to those for the gabbro-diorite porphyry (0.25-0.36 %o and 3.77-4.62 %o) and for the massive ores (0.16-0.19 %o and 3.41-5.70 %o), respectively. The above textural, elemental, and isotopic evidence indicate that the Meishan IOA deposit is of magmatic-hydrothermal origin and records repeated vents of hydrothermal fluids.
引用
收藏
页数:19
相关论文
共 107 条
[41]   In-situ iron isotope analyses reveal igneous and magmatic-hydrothermal growth of magnetite at the Los Colorados Kiruna-type iron oxide-apatite deposit, Chile [J].
Knipping, Jaayke L. ;
Fiege, Adrian ;
Simon, Adam C. ;
Oeser, Martin ;
Reich, Martin ;
Bilenker, Laura D. .
AMERICAN MINERALOGIST, 2019, 104 (04) :471-484
[42]   Trace elements in magnetite from massive iron oxide-apatite deposits indicate a combined formation by igneous and magmatic-hydrothermal processes [J].
Knipping, Jaayke L. ;
Bilenker, Laura D. ;
Simon, Adam C. ;
Reich, Martin ;
Barra, Fernando ;
Deditius, Artur P. ;
Waelle, Markus ;
Heinrich, Christoph A. ;
Holtz, Francois ;
Munizaga, Rodrigo .
GEOCHIMICA ET COSMOCHIMICA ACTA, 2015, 171 :15-38
[43]   Giant Kiruna-type deposits form by efficient flotation of magmatic magnetite suspensions [J].
Knipping, Jaayke L. ;
Bilenker, Laura D. ;
Simon, Adam C. ;
Reich, Martin ;
Barra, Fernando ;
Deditius, Artur P. ;
Lundstrom, Craig ;
Bindeman, Ilya ;
Munizaga, Rodrigo .
GEOLOGY, 2015, 43 (07) :591-594
[44]  
Krolop P., 2021, EGU211987
[45]   The Geochemistry of Magnetite and Apatite from the El Laco Iron Oxide-Apatite Deposit, Chile: Implications for Ore Genesis [J].
La Cruz, Nikita L. ;
Ovalle, J. Tomas ;
Simon, Adam C. ;
Konecke, Brian A. ;
Barra, Fernando ;
Reich, Martin ;
Leisen, Mathieu ;
Childress, Tristan M. .
ECONOMIC GEOLOGY, 2020, 115 (07) :1461-1491
[46]   ILMAT: an Excel worksheet for ilmenite-magnetite geothermometry and geobarometry [J].
Lepage, LD .
COMPUTERS & GEOSCIENCES, 2003, 29 (05) :673-678
[47]   Experiments on liquid immiscibility in silicate melts with H2O, P, S, F and Cl: implications for natural magmas [J].
Lester, G. W. ;
Clark, A. H. ;
Kyser, T. K. ;
Naslund, H. R. .
CONTRIBUTIONS TO MINERALOGY AND PETROLOGY, 2013, 166 (01) :329-349
[48]   The role of evaporites in the formation of magnetite-apatite deposits along the Middle and Lower Yangtze River, China: Evidence from LA-ICP-MS analysis of fluid inclusions [J].
Li, Wanting ;
Audetat, Andreas ;
Zhang, Jun .
ORE GEOLOGY REVIEWS, 2015, 67 :264-278
[49]   SIMS U-Pb zircon geochronology of porphyry Cu-Au-(Mo) deposits in the Yangtze River Metallogenic Belt, eastern China: Magmatic response to early Cretaceous lithospheric extension [J].
Li, Xian-Hua ;
Li, Wu-Xian ;
Wang, Xuan-Ce ;
Li, Qiu-Li ;
Liu, Yu ;
Tang, Guo-Qiang ;
Gao, Yu-Ya ;
Wu, Fu-Yuan .
LITHOS, 2010, 119 (3-4) :427-438
[50]   Iron isotope fractionation during fluid metasomatism and ore-forming processes in magmatic-hydrothermal systems [J].
Liao, Wang ;
Zhao, Xin-Fu ;
Zeng, Li-Ping ;
Weyer, Stefan ;
Zhang, Chao ;
Horn, Ingo ;
Holtz, Francois .
GEOCHIMICA ET COSMOCHIMICA ACTA, 2023, 355 :161-172