Scalable tensor network algorithm for thermal quantum many-body systems in two dimensions

被引:1
作者
Zhang, Meng [1 ]
Zhang, Hao [2 ,3 ]
Wang, Chao [1 ]
He, Lixin [1 ,2 ,3 ,4 ]
机构
[1] Hefei Comprehens Natl Sci Ctr, Inst Artificial Intelligence, Hefei 230088, Peoples R China
[2] Univ Sci & Technol China, CAS Key Lab Quantum Informat, Hefei 230026, Peoples R China
[3] Univ Sci & Technol China, Synerget Innovat Ctr Quantum Informat & Quantum Ph, Hefei 230026, Peoples R China
[4] Univ Sci & Technol China, Hefei Natl Lab, Hefei 230088, Peoples R China
基金
中国国家自然科学基金;
关键词
MATRIX PRODUCT STATES; MONTE-CARLO; SUPERCONDUCTIVITY;
D O I
10.1103/PhysRevB.111.075146
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Simulating strongly correlated quantum many-body systems at finite temperatures is a significant challenge in computational physics. In this work, we present a scalable finite-temperature tensor network algorithm for twodimensional quantum many-body systems. We employ the (fermionic) projected entangled pair state to represent the vectorization of the quantum thermal state, and we utilize a stochastic reconfiguration method to cool down the quantum states from infinite temperature. We validate our method by benchmarking it against the twodimensional antiferromagnetic Heisenberg model, the J1-J2 model, and the Fermi-Hubbard model, comparing physical properties such as internal energy, specific heat, and magnetic susceptibility with results obtained from stochastic series expansion, exact diagonalization, and determinant quantum Monte Carlo.
引用
收藏
页数:9
相关论文
共 50 条
[41]   QUASICLASSICAL FOURIER PATH INTEGRAL QUANTUM CORRECTION TERMS TO THE KINETIC ENERGY OF INTERACTING QUANTUM MANY-BODY SYSTEMS [J].
Gernoth, K. A. .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2009, 23 (20-21) :3979-3991
[42]   QUASICLASSICAL FOURIER PATH INTEGRAL QUANTUM CORRECTION TERMS TO THE KINETIC ENERGY OF INTERACTING QUANTUM MANY-BODY SYSTEMS [J].
Gernoth, K. A. .
CONDENSED MATTER THEORIES, VOL 24, 2010, :43-55
[43]   Energy as a Detector of Nonlocality of Many-Body Spin Systems [J].
Tura, J. ;
De las Cuevas, G. ;
Augusiak, R. ;
Lewenstein, M. ;
Acin, A. ;
Cirac, J. I. .
PHYSICAL REVIEW X, 2017, 7 (02)
[44]   Certificates of quantum many-body properties assisted by machine learning [J].
Requena, Borja ;
Munoz-Gil, Gorka ;
Lewenstein, Maciej ;
Dunjko, Vedran ;
Tura, Jordi .
PHYSICAL REVIEW RESEARCH, 2023, 5 (01)
[45]   Many-body quantum muon effects and quadrupolar coupling in solids [J].
Gomilsek, Matjaz ;
Pratt, Francis L. ;
Cottrell, Stephen P. ;
Clark, Stewart J. ;
Lancaster, Tom .
COMMUNICATIONS PHYSICS, 2023, 6 (01)
[46]   Certifying Ground-State Properties of Many-Body Systems [J].
Wang, Jie ;
Surace, Jacopo ;
Frerot, Irenee ;
Legat, Benoit ;
Renou, Marc-Olivier ;
Magron, Victor ;
Acin, Antonio .
PHYSICAL REVIEW X, 2024, 14 (03)
[47]   Quantum textures of the many-body wavefunctions in magic-angle graphene [J].
Nuckolls, Kevin P. ;
Lee, Ryan L. ;
Oh, Myungchul ;
Wong, Dillon ;
Soejima, Tomohiro ;
Hong, Jung Pyo ;
Calugaru, Dumitru ;
Herzog-Arbeitman, Jonah ;
Bernevig, B. Andrei ;
Watanabe, Kenji ;
Taniguchi, Takashi ;
Regnault, Nicolas ;
Zaletel, Michael P. ;
Yazdani, Ali .
NATURE, 2023, 620 (7974) :525-+
[48]   Quantum many-body theory for q-deformed fermions and bosons [J].
Esmaili, Habib ;
Mohammadzadeh, Hosein ;
Biderang, Mehdi ;
Nattaghnajafi, Morteza .
PHYSICAL REVIEW A, 2025, 111 (02)
[49]   Activity-induced phase transition in a quantum many-body system [J].
Adachi, Kyosuke ;
Takasan, Kazuaki ;
Kawaguchi, Kyogo .
PHYSICAL REVIEW RESEARCH, 2022, 4 (01)
[50]   Fluctuation based interpretable analysis scheme for quantum many-body snapshots [J].
Schloemer, Henning ;
Bohrdt, Annabelle .
SCIPOST PHYSICS, 2023, 15 (03)