Scalable tensor network algorithm for thermal quantum many-body systems in two dimensions

被引:0
作者
Zhang, Meng [1 ]
Zhang, Hao [2 ,3 ]
Wang, Chao [1 ]
He, Lixin [1 ,2 ,3 ,4 ]
机构
[1] Hefei Comprehens Natl Sci Ctr, Inst Artificial Intelligence, Hefei 230088, Peoples R China
[2] Univ Sci & Technol China, CAS Key Lab Quantum Informat, Hefei 230026, Peoples R China
[3] Univ Sci & Technol China, Synerget Innovat Ctr Quantum Informat & Quantum Ph, Hefei 230026, Peoples R China
[4] Univ Sci & Technol China, Hefei Natl Lab, Hefei 230088, Peoples R China
基金
中国国家自然科学基金;
关键词
MATRIX PRODUCT STATES; MONTE-CARLO; SUPERCONDUCTIVITY;
D O I
10.1103/PhysRevB.111.075146
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Simulating strongly correlated quantum many-body systems at finite temperatures is a significant challenge in computational physics. In this work, we present a scalable finite-temperature tensor network algorithm for twodimensional quantum many-body systems. We employ the (fermionic) projected entangled pair state to represent the vectorization of the quantum thermal state, and we utilize a stochastic reconfiguration method to cool down the quantum states from infinite temperature. We validate our method by benchmarking it against the twodimensional antiferromagnetic Heisenberg model, the J1-J2 model, and the Fermi-Hubbard model, comparing physical properties such as internal energy, specific heat, and magnetic susceptibility with results obtained from stochastic series expansion, exact diagonalization, and determinant quantum Monte Carlo.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Quantum computing with and for many-body physics
    Ayral, Thomas
    Besserve, Pauline
    Lacroix, Denis
    Guzman, Edgar Andres Ruiz
    EUROPEAN PHYSICAL JOURNAL A, 2023, 59 (10)
  • [22] Entangled Quantum Dynamics of Many-Body Systems using Bohmian Trajectories
    Elsayed, Tarek A.
    Molmer, Klaus
    Madsen, Lars Bojer
    SCIENTIFIC REPORTS, 2018, 8
  • [23] Machine learning approach to dynamical properties of quantum many-body systems
    Hendry, Douglas
    Feiguin, Adrian E.
    PHYSICAL REVIEW B, 2019, 100 (24)
  • [24] Many-body open quantum systems beyond Lindblad master equations
    Xu, Xiansong
    Thingna, Juzar
    Guo, Chu
    Poletti, Dario
    PHYSICAL REVIEW A, 2019, 99 (01)
  • [25] A sport and a pastime: Model design and computation in quantum many-body systems
    Pan, Gaopei
    Jiang, Weilun
    Meng, Zi Yang
    CHINESE PHYSICS B, 2022, 31 (12)
  • [26] Misuse of the minimal coupling to the electromagnetic field in quantum many-body systems
    Skolimowski, Jan
    Amaricci, Adriano
    Fabrizio, Michele
    PHYSICAL REVIEW B, 2020, 101 (12)
  • [27] Self-correcting quantum many-body control using reinforcement learning with tensor networks
    Metz, Friederike
    Bukov, Marin
    NATURE MACHINE INTELLIGENCE, 2023, 5 (07) : 780 - 791
  • [28] Stochastic representation of many-body quantum states
    Atanasova, Hristiana
    Bernheimer, Liam
    Cohen, Guy
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [29] Sparse Modeling in Quantum Many-Body Problems
    Otsuki, Junya
    Ohzeki, Masayuki
    Shinaoka, Hiroshi
    Yoshimi, Kazuyoshi
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2020, 89 (01)
  • [30] Classical and quantum algorithms for many-body problems
    Ayral, Thomas
    COMPTES RENDUS PHYSIQUE, 2025, 26