Scalable tensor network algorithm for thermal quantum many-body systems in two dimensions

被引:0
作者
Zhang, Meng [1 ]
Zhang, Hao [2 ,3 ]
Wang, Chao [1 ]
He, Lixin [1 ,2 ,3 ,4 ]
机构
[1] Hefei Comprehens Natl Sci Ctr, Inst Artificial Intelligence, Hefei 230088, Peoples R China
[2] Univ Sci & Technol China, CAS Key Lab Quantum Informat, Hefei 230026, Peoples R China
[3] Univ Sci & Technol China, Synerget Innovat Ctr Quantum Informat & Quantum Ph, Hefei 230026, Peoples R China
[4] Univ Sci & Technol China, Hefei Natl Lab, Hefei 230088, Peoples R China
基金
中国国家自然科学基金;
关键词
MATRIX PRODUCT STATES; MONTE-CARLO; SUPERCONDUCTIVITY;
D O I
10.1103/PhysRevB.111.075146
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Simulating strongly correlated quantum many-body systems at finite temperatures is a significant challenge in computational physics. In this work, we present a scalable finite-temperature tensor network algorithm for twodimensional quantum many-body systems. We employ the (fermionic) projected entangled pair state to represent the vectorization of the quantum thermal state, and we utilize a stochastic reconfiguration method to cool down the quantum states from infinite temperature. We validate our method by benchmarking it against the twodimensional antiferromagnetic Heisenberg model, the J1-J2 model, and the Fermi-Hubbard model, comparing physical properties such as internal energy, specific heat, and magnetic susceptibility with results obtained from stochastic series expansion, exact diagonalization, and determinant quantum Monte Carlo.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Positive Tensor Network Approach for Simulating Open Quantum Many-Body Systems
    Werner, A. H.
    Jaschke, D.
    Silvi, P.
    Kliesch, M.
    Calarco, T.
    Eisert, J.
    Montangero, S.
    PHYSICAL REVIEW LETTERS, 2016, 116 (23)
  • [2] One-dimensional many-body entangled open quantum systems with tensor network methods
    Jaschke, Daniel
    Montangero, Simone
    Carr, Lincoln D.
    QUANTUM SCIENCE AND TECHNOLOGY, 2019, 4 (01)
  • [3] Tensor Network Efficiently Representing Schmidt Decomposition of Quantum Many-Body States
    Zhou, Peng-Fei
    Lu, Ying
    Wang, Jia-Hao
    Ran, Shi-Ju
    PHYSICAL REVIEW LETTERS, 2023, 131 (02)
  • [5] Time evolution of many-body localized systems in two spatial dimensions
    Kshetrimayum, A.
    Goihl, M.
    Eisert, J.
    PHYSICAL REVIEW B, 2020, 102 (23)
  • [6] Nonlinear Network Description for Many-Body Quantum Systems in Continuous Space
    Ruggeri, Michele
    Moroni, Saverio
    Holzmann, Markus
    PHYSICAL REVIEW LETTERS, 2018, 120 (20)
  • [7] Adaptive-weighted tree tensor networks for disordered quantum many-body systems
    Ferrari, Giovanni
    Magnifico, Giuseppe
    Montangero, Simone
    PHYSICAL REVIEW B, 2022, 105 (21)
  • [8] Functional tensor network solving many-body Schrodinger equation
    Hong, Rui
    Xiao, Ya-Xuan
    Hu, Jie
    Ji, An-Chun
    Ran, Shi-Ju
    PHYSICAL REVIEW B, 2022, 105 (16)
  • [9] Quantum neural networks to simulate many-body quantum systems
    Gardas, Bartlomiej
    Rams, Marek M.
    Dziarmaga, Jacek
    PHYSICAL REVIEW B, 2018, 98 (18)
  • [10] A perturbative probabilistic approach to quantum many-body systems
    Di Stefano, Andrea
    Ostilli, Massimo
    Presilla, Carlo
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2013,