An automatic classification method with weak supervision for large-scale wetland mapping in transboundary (Irtysh River) basin using Sentinel 1/ 2 imageries

被引:2
作者
Luo, Kaiyue [1 ,2 ]
Samat, Alim [1 ,5 ,6 ]
van de Voorde, Tim [3 ]
Jiang, Weiguo [4 ]
Li, Wenbo [1 ,6 ]
Abuduwaili, Jilili [1 ,5 ,6 ]
机构
[1] Chinese Acad Sci, Xinjiang Inst Ecol & Geog, State Key Lab Desert & Oasis Ecol, Urumqi 830011, Xinjiang, Peoples R China
[2] Xinjiang Univ, Coll Geog & Remote Sensing Sci, Urumqi 830017, Peoples R China
[3] Univ Ghent, Dept Geog, Ghent, Belgium
[4] Beijing Normal Univ, Fac Geog Sci, Beijing Key Lab Remote Sensing Environm & Digital, Beijing 100875, Peoples R China
[5] Al Farabi Kazakh Natl Univ, China Kazakhstan Joint Lab RS Technol & Applicat, Alma Ata 050012, Kazakhstan
[6] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
Wetland classification; Sample transferring; Object-oriented random forest (OORF); Sentinel; 1/2; Spatiotemporal analysis; Irtysh River Basin; DIFFERENCE WATER INDEX; SURFACE-WATER; LONG-TERM; VEGETATION INDEX; CLIMATE-CHANGE; RANDOM FOREST; COVER CHANGES; MANAGEMENT; VALIDATION; ALGORITHMS;
D O I
10.1016/j.jenvman.2025.124969
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Wetlands are essential ecosystems that play a significant role in biodiversity conservation and environmental stability. Monitoring their changes is crucial for understanding ecological dynamics and informing conservation strategies, particularly those in transboundary basins. This study introduces a novel automatic classification method for mapping and detecting wetland changes in the Irtysh River Basin. Utilizing Google Earth Engine (GEE) as the primary platform, this method integrates unsupervised classification, sample transfer techniques, and object-oriented random forest (OORF) algorithms to generate accurate training samples and delineate wetlands. Using Sentinel-1 and Sentinel-2 satellite data, we created high-resolution wetland distribution maps. The process begins with unsupervised classification to identify wetland inundation zones, followed by overlaying permanent water bodies and surface depressions to refine the sample set. Sample transfer, using spectral similarity metrics with the GWL_FCS30 product, further enhances the robustness of the training data. The selected features from Sentinel-1 and Sentinel-2 data, including spectral indices, phenological parameters, and textural features, were optimized, resulting in 18 optimal features for the OORF classification. The classification achieved a high overall accuracy of 96.96%, with a sample accuracy of 98.1 %, and both User's and Producer's Accuracies consistently above 88 %. Spatiotemporal analysis of wetland changes from 2017 to 2023 revealed significant fluctuations, including a net loss of approximately 1,743.92 km2 of wetlands in the Irtysh River Basin. This study provides an effective and innovative method for large-scale wetland monitoring, offering valuable insights to support conservation and management efforts.
引用
收藏
页数:21
相关论文
共 126 条
[101]   Integrated time-lapse geoelectrical imaging of wetland hydrological processes [J].
Uhlemann, S. S. ;
Sorensen, J. P. R. ;
House, A. R. ;
Wilkinson, P. B. ;
Roberts, C. ;
Gooddy, D. C. ;
Binley, A. M. ;
Chambers, J. E. .
WATER RESOURCES RESEARCH, 2016, 52 (03) :1607-1625
[102]   UN Decade on Ecosystem Restoration 2021-2030-What Chance for Success in Restoring Coastal Ecosystems? [J].
Waltham, Nathan J. ;
Elliott, Michael ;
Lee, Shing Yip ;
Lovelock, Catherine ;
Duarte, Carlos M. ;
Buelow, Christina ;
Simenstad, Charles ;
Nagelkerken, Ivan ;
Claassens, Louw ;
Wen, Colin K-C ;
Barletta, Mario ;
Connolly, Rod M. ;
Gillies, Chris ;
Mitsch, William J. ;
Ogburn, Matthew B. ;
Purandare, Jemma ;
Possingham, Hugh ;
Sheaves, Marcus .
FRONTIERS IN MARINE SCIENCE, 2020, 7
[103]   Rapid and large changes in coastal wetland structure in China's four major river deltas [J].
Wang, Xinxin ;
Xiao, Xiangming ;
Zhang, Xi ;
Wu, Jihua ;
Li, Bo .
GLOBAL CHANGE BIOLOGY, 2023, 29 (08) :2286-2300
[104]   Spatial distribution and controlling factors of surface water stable isotope values (δ18O and δ2H) across Kazakhstan, Central Asia [J].
Wu, Huawu ;
Wu, Jinglu ;
Song, Fan ;
Abuduwaili, Jilili ;
Saparov, A. S. ;
Chen, Xi ;
Shen, Beibei .
SCIENCE OF THE TOTAL ENVIRONMENT, 2019, 678 :53-61
[105]   Multi-Label Active Learning Algorithms for Image Classification: Overview and Future Promise [J].
Wu, Jian ;
Sheng, Victor S. ;
Zhang, Jing ;
Li, Hua ;
Dadakova, Tetiana ;
Swisher, Christine Leon ;
Cui, Zhiming ;
Zhao, Pengpeng .
ACM COMPUTING SURVEYS, 2020, 53 (02)
[106]   Efficient Delineation of Nested Depression Hierarchy in Digital Elevation Models for Hydrological Analysis Using Level-Set Method [J].
Wu, Qiusheng ;
Lane, Charles R. ;
Wang, Lei ;
Vanderhoof, Melanie K. ;
Christensen, Jay R. ;
Liu, Hongxing .
JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, 2019, 55 (02) :354-368
[107]   Integrating LiDAR data and multi-temporal aerial imagery to map wetland inundation dynamics using Google Earth Engine [J].
Wu, Qiusheng ;
Lane, Charles R. ;
Li, Xuecao ;
Zhao, Kaiguang ;
Zhou, Yuyu ;
Clinton, Nicholas ;
DeVries, Ben ;
Golden, Heather E. ;
Lang, Megan W. .
REMOTE SENSING OF ENVIRONMENT, 2019, 228 :1-13
[108]   Tracking the environmental impacts of ecological engineering on coastal wetlands with numerical modeling and remote sensing [J].
Wu, Wenting ;
Yang, Zhaoqing ;
Chen, Chunpeng ;
Tian, Bo .
JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2022, 302
[109]   Opening the archive: How free data has enabled the science and monitoring promise of Landsat [J].
Wulder, Michael A. ;
Masek, Jeffrey G. ;
Cohen, Warren B. ;
Loveland, Thomas R. ;
Woodcock, Curtis E. .
REMOTE SENSING OF ENVIRONMENT, 2012, 122 :2-10
[110]   Future impacts of climate change on inland Ramsar wetlands [J].
Xi, Yi ;
Peng, Shushi ;
Ciais, Philippe ;
Chen, Youhua .
NATURE CLIMATE CHANGE, 2021, 11 (01) :45-+