Web application development for diabetes patients

被引:0
作者
Nagy, Miklos [1 ]
Simon, Barbara [1 ,2 ]
Szasz, Laszlo [1 ,2 ]
Siket, Mate [1 ]
Denes-Fazakas, Lehel [1 ,2 ,3 ]
Eigner, Gyorgy [1 ,2 ]
Suli, Patrik Peter [1 ,2 ]
Kovacs, Levente [1 ,2 ]
Szilagyi, Laszlo [1 ,2 ]
机构
[1] Obuda Univ, Univ Res & Innovat Ctr, Physiol Controls Res Ctr, Budapest, Hungary
[2] Obuda Univ, John von Neumann Fac Informat, Biomat & Appl Artificial Intelligence Inst, Budapest, Hungary
[3] Obuda Univ, Appl Informat & Appl Math Doctoral Sch, Becsi St 96-B, H-1034 Budapest, Hungary
来源
18TH INTERNATIONAL SYMPOSIUM ON APPLIED COMPUTATIONAL INTELLIGENCE AND INFORMATICS, SACI 2024 | 2024年
关键词
diabetes management; mobile applications; logging functions; insulin intake; carbohydrate intake; artificial intelligence; predictive models; blood glucose levels; decision support; patient monitoring; web application; data security; GLUCOSE CONTROL; MODEL;
D O I
10.1109/SACI60582.2024.10619716
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The summary provides an overview of the proliferation of diabetes management apps, highlighting their increasing availability and varied features. These apps allow users to log events related to insulin and carbohydrate intake, with some offering additional functionalities like tracking activity levels and stress. Logging capabilities range from basic timestamps to more complex entries with multiple attached data types. Integration of artificial intelligence enhances these apps, enabling predictive models for blood glucose levels and decision support. The summary introduces a web application for monitoring and managing diabetes patients, emphasizing its predictive blood glucose feature based on patient parameters. It includes detailed explanations of module usage and discusses potential future developments, stressing the importance of secure medical data management.
引用
收藏
页码:573 / 579
页数:7
相关论文
共 29 条
  • [1] Sampled-data Observer-based Glucose Control for the Artificial Pancreas
    Borri, Alessandro
    Palumbo, Pasquale
    Manes, Costanzo
    Panunzi, Simona
    De Gaetano, Andrea
    [J]. ACTA POLYTECHNICA HUNGARICA, 2017, 14 (01) : 79 - 94
  • [2] Deep Learning-based Transfer Learning Model in Diagnosis of Diseases with Brain Magnetic Resonance Imaging
    Chandaran, Suganthe Ravi
    Muthusamy, Geetha
    Sevalaiappan, Latha Rukmani
    Senthilkumaran, Nivetha
    [J]. ACTA POLYTECHNICA HUNGARICA, 2022, 19 (05) : 127 - 147
  • [3] Chougale P., 2022, Journal of Engineering and Technology Management, P2582
  • [4] mHealth applications for diabetes: User preference and implications for app development
    Conway, Nicholas
    Campbell, Iona
    Forbes, Paula
    Cunningham, Scott
    Wake, Deborah
    [J]. HEALTH INFORMATICS JOURNAL, 2016, 22 (04) : 1111 - 1120
  • [5] Denes-fazakas Lehel, 2022, 2022 IEEE International Conference on Systems, Man, and Cybernetics (SMC), P1512, DOI 10.1109/SMC53654.2022.9945084
  • [6] Denes-Fazakas Lehel, 2020, IEEE 20th International Symposium on Computational Intelligence and Informatics (CINTI 2020). Proceedings, P167, DOI 10.1109/CINTI51262.2020.9305845
  • [7] Detection of Physical Activity Using Machine Learning Methods Based on Continuous Blood Glucose Monitoring and Heart Rate Signals
    Denes-Fazakas, Lehel
    Siket, Mate
    Szilagyi, Laszlo
    Kovacs, Levente
    Eigner, Gyorgy
    [J]. SENSORS, 2022, 22 (21)
  • [8] Dey Samrat Kumar, 2018, 2018 21st International Conference of Computer and Information Technology (ICCIT), DOI 10.1109/ICCITECHN.2018.8631968
  • [9] Smartphone-Based Technology in Diabetes Management
    Doupis, John
    Festas, Georgios
    Tsilivigos, Christos
    Efthymiou, Vasiliki
    Kokkinos, Alexander
    [J]. DIABETES THERAPY, 2020, 11 (03) : 607 - 619
  • [10] Harimahardika G. S., 2023, Babali Nurs. Res., V4, P796