Zygmund theorem for harmonic quasiregular mappings

被引:0
作者
Kalaj, David [1 ]
机构
[1] Univ Montenegro, Fac Nat Sci & Math, Podgorica 81000, Montenegro
关键词
Harmonic mappings; Quasiregular mappings; Riesz inequality; Zygmund inequality; CONSTANTS;
D O I
10.1007/s13324-025-01043-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let K >= 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K\ge 1$$\end{document}. We prove Zygmund theorem for K-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K-$$\end{document}quasiregular harmonic mappings in the unit disk D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {D}$$\end{document} in the complex plane by providing a constant C(K) in the inequality & Vert;f & Vert;1 <= C(K)(1+& Vert;Re(f)log+|Ref|& Vert;1),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \Vert f\Vert _{1}\le C(K)(1+\Vert \textrm{Re}\,(f)\log <^>+ |\textrm{Re}\, f|\Vert _1), \end{aligned}$$\end{document}provided that Imf(0)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{Im}\,f(0)=0$$\end{document}. Moreover for a quasiregular harmonic mapping f=(f1,& ctdot;,fn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f=(f_1,\dots , f_n)$$\end{document} defined in the unit ball B subset of Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {B}\subset \mathbb {R}<^>n$$\end{document}, we prove the asymptotically sharp inequality & Vert;f & Vert;1-|f(0)|<=(n-1)K2(& Vert;f1logf1 & Vert;1-f1(0)logf1(0)),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \Vert f\Vert _{1}-|f(0)|\le (n-1)K<^>2(\Vert f_1\log f_1\Vert _1- f_1(0)\log f_1(0)), \end{aligned}$$\end{document}when K -> 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K\rightarrow 1$$\end{document}, provided that f1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_1$$\end{document} is positive.
引用
收藏
页数:13
相关论文
共 14 条
[1]  
Chen SL, 2023, Arxiv, DOI arXiv:2310.15452
[2]  
Duren Peter L., 1970, THEORY HP SPACES, V38
[3]   Best constants for some operators associated with the Fourier and Hilbert transforms [J].
Hollenbeck, B ;
Kalton, NJ ;
Verbitsky, IE .
STUDIA MATHEMATICA, 2003, 157 (03) :237-278
[4]  
Hrmander L., 1994, Notions of convexity, Progress in Mathematics
[5]   Riesz and Kolmogorov inequality for harmonic quasiregular mappings [J].
Kalaj, David .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2025, 542 (01)
[6]  
Kalaj D, 2025, POTENTIAL ANAL, V62, P667, DOI 10.1007/s11118-024-10150-8
[7]   On the univalent solution of PDE Δu=f between spherical annuli [J].
Kalaj, David .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 327 (01) :1-11
[8]   ON RIESZ TYPE INEQUALITIES FOR HARMONIC MAPPINGS ON THE UNIT DISK [J].
Kalaj, David .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 372 (06) :4031-4051
[9]   Riesz conjugate functions theorem for harmonic quasiconformal mappings [J].
Liu, Jinsong ;
Zhu, Jian-Feng .
ADVANCES IN MATHEMATICS, 2023, 434
[10]   Hollenbeck-Verbitsky conjecture on best constant inequalities for analytic and co-analytic projections [J].
Melentijevic, Petar .
MATHEMATISCHE ANNALEN, 2024, 388 (04) :4405-4448