共 86 条
- [11] Yap J.K.Y., Moriyama M., Iwasaki A., Inflammasomes and Pyroptosis as Therapeutic Targets for COVID-19, J. Immunol, 205, pp. 307-312, (2020)
- [12] Lee J.H., Sergi C., Kast R.E., Kanwar B.A., Bourbeau J., Oh S., Sohn M.-G., Lee C.J., Coleman M.D., Aggravating mechanisms from COVID-19, Virol. J, 21, (2024)
- [13] Viox E.G., Bosinger S.E., Douek D.C., Schreiber G., Paiardini M., Harnessing the power of IFN for therapeutic approaches to COVID-19, J. Virol, 98, (2024)
- [14] Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y., Zhang L., Fan G., Xu J., Gu X., Et al., Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China, Lancet, 395, pp. 497-506, (2020)
- [15] Eltzschig H.K., Carmeliet P., Hypoxia and inflammation, N. Engl. J. Med, 364, pp. 656-665, (2011)
- [16] Begemann M., Gross O., Wincewicz D., Hardeland R., Daguano Gastaldi V., Vieta E., Weissenborn K., Miskowiak K.W., Moerer O., Ehrenreich H., Addressing the ‘hypoxia paradox’ in severe COVID-19: Literature review and report of four cases treated with erythropoietin analogues, Mol. Med, 27, (2021)
- [17] Dhont S., Derom E., Van Braeckel E., Depuydt P., Lambrecht B.N., The pathophysiology of ‘happy’ hypoxemia in COVID-19, Respir. Res, 21, (2020)
- [18] Maira D., Duca L., Busti F., Consonni D., Salvatici M., Vianello A., Milani A., Guzzardella A., Di Pierro E., Aliberti S., Et al., The role of hypoxia and inflammation in the regulation of iron metabolism and erythropoiesis in COVID-19: The IRONCOVID study, Am. J. Hematol, 97, pp. 1404-1412, (2022)
- [19] Liu Q., Davidoff O., Niss K., Haase V.H., Hypoxia-inducible factor regulates hepcidin via erythropoietin-induced erythropoiesis, J. Clin. Invest, 122, pp. 4635-4644, (2012)
- [20] Nemeth E., Ganz T., Hepcidin-Ferroportin Interaction Controls Systemic Iron Homeostasis, Int. J. Mol. Sci, 22, (2021)