DEEP FUSION OF SHIFTED MLP AND CNN FOR MEDICAL IMAGE SEGMENTATION

被引:1
作者
Yuan, Chengyu [1 ,2 ,3 ]
Xiong, Hao [4 ]
Shangguan, Guoqing [1 ]
Shen, Hualei [1 ,2 ,3 ]
Liu, Dong [1 ,2 ,3 ]
Zhang, Haojie [5 ,6 ]
Liu, Zhonghua [7 ]
Qian, Kun [5 ,6 ]
Hu, Bin [5 ,6 ]
Schuller, Bjoern W. [8 ,9 ]
Yamamoto, Yoshiharu [10 ]
Berkovsky, Shlomo [4 ]
机构
[1] Henan Normal Univ, Coll Comp & Informat Engn, Xinxiang, Henan, Peoples R China
[2] Key Lab Artificial Intelligence & Personalized Le, Xinxiang, Henan, Peoples R China
[3] Big Data Engn Lab Teaching Resources & Assessment, Xinxiang, Henan, Peoples R China
[4] Macquarie Univ, Australian Inst Hlth Innovat, Ctr Hlth Informat, N Ryde, NSW, Australia
[5] Minist Educ, Key Lab Brain Hlth Intelligent Evaluat & Interven, Beijing, Peoples R China
[6] Beijing Inst Technol, Sch Med Technol, Beijing, Peoples R China
[7] Zhejiang Ocean Univ, Sch Informat Engn, Hangzhou, Peoples R China
[8] Imperial Coll London, GLAM Grp Language Audio & Mus, London, England
[9] Univ Augsburg, Chair Embedded Intelligence Hlth Care & Wellbeing, Augsburg, Germany
[10] Univ Tokyo, Grad Sch Educ, Educ Physiol Lab, Tokyo, Japan
来源
2024 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, ICASSP 2024 | 2024年
基金
中国国家自然科学基金;
关键词
Medical image segmentation; MLP; CNN; hierarchical fusion; PLUS PLUS;
D O I
10.1109/ICASSP48485.2024.10446716
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Medical image segmentation is an important task in modern analysis of medical images. Current methods tend to extract either local features with convolutions or global features with Transformers. However, few of them are able to effectively fuse global and local features to facilitate segmentation. In this work, we propose a novel hybrid network that involves three main branches: the Multi-Layer Perception (MLP) branch, the Convolutional Neural Network (CNN) branch, and a Fusion branch. The MLP and CNN branches aim to learn global and local features, respectively. To fuse these, the fusion branch introduces a novel hierarchical fusion that performs multi-layered fusions that generate high-level representations to enhance segmentation. Our evaluation with two datasets shows strong performance of the proposed method compared to state-of-the-art baselines.
引用
收藏
页码:1676 / 1680
页数:5
相关论文
共 22 条
[1]   Dataset of breast ultrasound images [J].
Al-Dhabyani, Walid ;
Gomaa, Mohammed ;
Khaled, Hussien ;
Fahmy, Aly .
DATA IN BRIEF, 2020, 28
[2]  
Codella NCF, 2018, I S BIOMED IMAGING, P168, DOI 10.1109/ISBI.2018.8363547
[3]  
Dosovitskiy A., 2020, INT C LEARN REPR, P1
[4]  
Hu J, 2018, PROC CVPR IEEE, P7132, DOI [10.1109/TPAMI.2019.2913372, 10.1109/CVPR.2018.00745]
[5]   ResUNet plus plus : An Advanced Architecture for Medical Image Segmentation [J].
Jha, Debesh ;
Smedsrud, Pia H. ;
Riegler, Michael A. ;
Johansen, Dag ;
de Lange, Thomas ;
Halvorsen, Pal ;
Johansen, Havard D. .
2019 IEEE INTERNATIONAL SYMPOSIUM ON MULTIMEDIA (ISM 2019), 2019, :225-230
[6]  
Lian D., 2022, INT C LEARN REPR
[7]  
Lin Yan, 2023, arXiv
[8]   USMLP: U-shaped Sparse-MLP network for mass segmentation in mammograms [J].
Luo, Jiaming ;
Tang, Yongzhe ;
Wang, Jie ;
Lu, Hongtao .
IMAGE AND VISION COMPUTING, 2023, 137
[9]  
OKTAY O, 2018, 1 C MED IM DEEP LEAR
[10]   BASNet: Boundary-Aware Salient Object Detection [J].
Qin, Xuebin ;
Zhang, Zichen ;
Huang, Chenyang ;
Gao, Chao ;
Dehghan, Masood ;
Jagersand, Martin .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :7471-7481