Background/Objectives: Traditional fusion leads to a loss of spine mobility across the fused vertebrae. Vertebral body tethering (VBT) was developed with the goal of increasing flexibility and maintaining some spinal mobility. However, it is not known if the additional mobility leads to significant functional improvement. This prospective motion analysis study evaluates functional outcomes, specifically gait stability, in pre-operative, post-fusion, and post-VBT patients by using postural perturbations on a treadmill. Methods: Overall, 79 subjects underwent a computer-controlled treadmill study with postural perturbations, which simulated trips and slips. The subjects were harnessed for safety. Overall, 21 subjects were healthy controls, 18 patients were at least one-year post-VBT, 15 patients were at least one-year post-fusion, and 25 were pre-operative scoliosis patients. Subject weight, height, and treadmill acceleration were recorded and used to determine anteroposterior single (ASSTs, PSSTs) and multiple (AMSTs, PMSTs) stepping thresholds to describe the maximum torque a patient could withstand before failing to recover from the simulated trip. Independent t-tests were run to compare groups under the advice of a master statistician with expertise in orthopedic surgery. Results: Pre-operative scoliosis patients had lower PSSTs than healthy controls (uncorrected p = 0.036). No significant differences were observed between pre-operative and post-operative groups for both fusion and VBT. There was no significant difference in ASST, AMST, or PMST between any of the groups. Conclusions: The lower PSST in pre-operative scoliosis patients compared to healthy controls may reflect impaired reactive balance and potentially increased fall risk. Interestingly, there was no significant difference in reactive balance measures between pre-operative and post-operative scoliosis patients or between post-fusion and post-VBT patients.