Evaluating water pipe leak detection and localization with various machine learning and deep learning models

被引:0
|
作者
Pandian, C. [1 ]
Alphonse, P. J. A. [1 ]
机构
[1] Natl Inst Technol Tiruchirappalli, Dept Comp Applicat, Tiruchirappalli, Tamilnadu, India
关键词
Machine learning; Deep learning; Water pipe leak detection; Water pipe leak localization;
D O I
10.1007/s13198-025-02726-3
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The detection and localization of water pipe leaks are essential for maintaining the efficiency and sustainability of water distribution systems. Traditional methods, such as visual inspection, acoustic detection, and pressure testing, are often labour-intensive, time-consuming, and may not provide real-time monitoring, leading to significant water loss, infrastructure damage, and increased operational costs. Advances in machine learning and deep learning technologies offer a promising alternative, enabling the development of automated, accurate, and timely leak detection systems. This study presents a simulation-based approach to generate datasets for leak detection and localization within pipe systems. We implemented and compared five models: Ridge Regression, Lasso Regression, Decision Tree Regression, Support Vector Regression, and Artificial Neural Network (ANN). Among these, Decision Tree Regression and ANN demonstrated superior performance in accurately detecting and localizing leaks. Our findings suggest that ANN is particularly effective for leak localization, providing a robust solution to minimize water loss, infrastructure damage, and environmental impact while ensuring the reliability of water distribution systems.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Machine Learning Model for Leak Detection Using Water Pipeline Vibration Sensor
    Lee, Suan
    Kim, Byeonghak
    SENSORS, 2023, 23 (21)
  • [32] Smart Residential Water Leak and Overuse Detection System Using Machine Learning
    Ismail, Heba
    Elabyad, Rawan
    Dyab, Arwa
    2022 IEEE/ACS 19TH INTERNATIONAL CONFERENCE ON COMPUTER SYSTEMS AND APPLICATIONS (AICCSA), 2022,
  • [33] Leak detection and localization in underground water supply system using thermal imaging and geophone signals through machine learning
    Islam, Mohammed Rezwanul
    Azam, Sami
    Shanmugam, Bharanidharan
    Mathur, Deepika
    INTELLIGENT SYSTEMS WITH APPLICATIONS, 2024, 23
  • [34] A two-phase approach for leak detection and localization in water distribution systems using wavelet decomposition and machine learning
    Adraoui, Meriem
    Azmi, Rida
    Chenal, Jerome
    Diop, El Bachir
    Abdem, Seyid Abdellahi Ebnou
    Serbouti, Imane
    Hlal, Mohammed
    Bounabi, Mariem
    COMPUTERS & INDUSTRIAL ENGINEERING, 2024, 197
  • [35] Advancements in Phishing Website Detection: A Comprehensive Analysis of Machine Learning and Deep Learning Models
    Mousavi, Soudabeh
    Bahaghighat, Mandi
    Ozen, Figen
    32ND IEEE SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU 2024, 2024,
  • [36] A review on recent developments in cancer detection using Machine Learning and Deep Learning models
    Maurya, Sonam
    Tiwari, Sushil
    Mothukuri, Monika Chowdary
    Tangeda, Chandra Mallika
    Nandigam, Rohitha Naga Sri
    Addagiri, Durga Chandana
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 80
  • [37] Enhancing Phishing Detection: A Machine Learning Approach With Feature Selection and Deep Learning Models
    Nayak, Ganesh S.
    Muniyal, Balachandra
    Belavagi, Manjula C.
    IEEE ACCESS, 2025, 13 : 33308 - 33320
  • [38] A hybrid framework for glaucoma detection through federated machine learning and deep learning models
    Aljohani, Abeer
    Aburasain, Rua Y.
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2024, 24 (01)
  • [39] Rootkit Detection Using Hybrid Machine Learning Models and Deep Learning Model: Implementation
    Kumar, Suresh S.
    Stephen, S.
    Rumysia, Suhainul M.
    2024 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATION AND APPLIED INFORMATICS, ACCAI 2024, 2024,
  • [40] Climatic water balance forecasting with machine learning and deep learning models over Bangladesh
    Uddin, Md Jalal
    Li, Yubin
    Sattar, Md Abdus
    Mistry, Sunit
    INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2022, 42 (16) : 10083 - 10106