Automation of protein crystallization scaleup via Opentrons-2 liquid handling

被引:0
作者
Deroo, Jacob B. [1 ]
Jones, Alec A. [1 ]
Slaughter, Caroline K. [2 ]
Ahr, Tim W. [3 ]
Stroup, Sam M. [4 ]
Thompson, Grace B. [1 ,5 ]
Snow, Christopher D. [1 ,2 ,3 ,4 ]
机构
[1] Colorado State Univ, Sch Biomed Engn, Ft Collins, CO 80523 USA
[2] Colorado State Univ, Dept Cellular & Mol Biol, Ft Collins, CO 80523 USA
[3] Colorado State Univ, Dept Chem Engn, Ft Collins, CO 80523 USA
[4] Colorado State Univ, Dept Chem, Ft Collins, CO 80523 USA
[5] Colorado State Univ, Dept Elect Engn, Ft Collins, CO USA
来源
SLAS TECHNOLOGY | 2025年 / 32卷
基金
美国国家卫生研究院;
关键词
Liquid handling; Protein crystallization; Crystallography; Sitting drop crystallization; EGG-WHITE LYSOZYME; OPTIMIZATION;
D O I
10.1016/j.slast.2025.100268
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
In this study we present an approach for optimizing protein crystallization trials at the multi-microliter scale utilizing the Opentrons-2 liquid handling robot. Our research demonstrates the robot's capability to automate 24-well sitting drop protein crystallization trials. Using Python scripts for precise control, the study explores the robot's application in mixing and setting up crystallization plates with a model protein (hen egg white lysozyme) and a periplasmic protein from Campylobacter jejuni, a crystal utilized in the Snow lab as a biomaterial for nanotechnology that requires large, consistent batches. In a head-to-head comparison with manual 24-well plate setup, crystal growth statistics indicate our approach can reduce manual labor and increase reliability in protein crystallization, and may also reduce variability, offering an economical and versatile tool for laboratories. This study shows facile adaption of the Opentrons interface and hardware for growth of two different crystal types. All developed liquid handling routines and relevant data files, in addition to demonstration videos are available at https://github.com/jbderoo/Opentrons2-Protein-Crystallization
引用
收藏
页数:6
相关论文
共 29 条
[11]   Porous protein crystals: synthesis and applications [J].
Jones, Alec Arthur ;
Snow, Christopher D. .
CHEMICAL COMMUNICATIONS, 2024, 60 (45) :5790-5803
[12]  
Kanase A, 2023, Opentrons
[13]   Engineering of protein crystals for use as solid biomaterials [J].
Kojima, Mariko ;
Abe, Satoshi ;
Ueno, Takafumi .
BIOMATERIALS SCIENCE, 2022, 10 (02) :354-367
[14]   Porous protein crystals as scaffolds for enzyme immobilization [J].
Kowalski, Ann E. ;
Johnson, Lucas B. ;
Dierl, Holly K. ;
Park, Sehoo ;
Huber, Thaddaus R. ;
Snow, Christopher D. .
BIOMATERIALS SCIENCE, 2019, 7 (05) :1898-1904
[15]  
Krishna R, 2023, bioRxiv, DOI [10.1101/2023.10.09.561603.2023, DOI 10.1101/2023.10.09.561603.2023]
[16]   Use of a Robot for High-throughput Crystallization of Membrane Proteins in Lipidic Mesophases [J].
Li, Dianfan ;
Boland, Coiln ;
Walsh, Kilian ;
Caffrey, Martin .
JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2012, (67)
[17]   What's happened over the last five years with high-throughput protein crystallization screening? [J].
Lin, Yibin .
EXPERT OPINION ON DRUG DISCOVERY, 2018, 13 (08) :691-695
[18]   A deliberate approach to screening for initial crystallization conditions of biological macromolecules [J].
Luft, JR ;
Collins, RJ ;
Fehrman, NA ;
Lauricella, AM ;
Veatch, CK ;
DeTitta, GT .
JOURNAL OF STRUCTURAL BIOLOGY, 2003, 142 (01) :170-179
[19]   Custom Design of a Humidifier Chamber for In Meso Crystallization [J].
Marin, Egor ;
Kovalev, Kirill ;
Poelman, Therese ;
Veenstra, Rick ;
Borshchevskiy, Valentin ;
Guskov, Albert .
CRYSTAL GROWTH & DESIGN, 2023, 24 (01) :325-330
[20]  
Martin L, 2021, Methods to screen for radical SAM enzyme crystallization conditions BT-Fe-S proteins: methods and protocols, P333, DOI [10.1007/978-1-0716-1605-5_17, DOI 10.1007/978-1-0716-1605-5_17]