A multi-scale constitutive model for AlSi10Mg alloy fabricated via laser powder bed fusion

被引:1
作者
Lei, Mingqi [1 ,2 ]
Aditya, Ramesh [2 ]
Liu, Lu [3 ]
Wu, Mao See [2 ]
Wang, Jundong [1 ]
Zhou, Kun [2 ]
Yao, Yao [1 ]
机构
[1] Northwestern Polytech Univ, Sch Mech Civil Engn & Architecture, Xian 710072, Peoples R China
[2] Nanyang Technol Univ, Sch Mech & Aerosp Engn, Singapore 639798, Singapore
[3] Nanjing Univ Posts & Telecommun, Coll Integrated Circuit Sci & Engn, Natl & Local Joint Engn Lab RF Integrat & Microass, Nanjing 210023, Peoples R China
关键词
AlSi10Mg alloy; Additive manufacturing; Crystal plasticity; Homogenization method; Structure-property relation; DEFORMATION; MICROSTRUCTURE; TEMPERATURE; ALUMINUM; BEHAVIOR;
D O I
10.1016/j.ijsolstr.2024.113111
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Additively Manufactured (AM) aluminum alloys find extensive applications in various fields due to their favorable properties. Numerical simulations play a crucial role in reducing experimental costs and enhancing reliability. Developing a reliable constitutive numerical model requires careful consideration of the hierarchical microstructure inherent in AM aluminum alloys. In response, a multiscale constitutive model has been formulated for the AlSi10Mg alloy, fabricated through laser powder bed fusion. This model incorporates crystal plasticity theory and micromechanics-based homogenization methods to establish representative volume elements at different length scales. These scales include the grain scale, polycrystalline scale, and macro scale, thus facilitating a seamless transition between them. The model is calibrated using macroscopic and average phase stress-strain relationships, demonstrating its capability to predict lattice strain in each phase. Additionally, this model incorporates a quantitative analysis of the effects of two-phase structure, melt pool structure, and porosity by adjusting microstructure parameters. The developed model is embedded into a user-defined material subroutine, providing an efficient approach to investigate microstructure-property relationships in AM alloys.
引用
收藏
页数:10
相关论文
共 46 条
[1]   Elastic and mechanical properties of cubic diamond and silicon using density functional theory and the random phase approximation [J].
Barhoumi, M. ;
Rocca, D. ;
Said, M. ;
Lebegue, S. .
SOLID STATE COMMUNICATIONS, 2021, 324
[2]   A dislocation-based constitutive law for pure Zr including temperature effects [J].
Beyerlein, I. J. ;
Tome, C. N. .
INTERNATIONAL JOURNAL OF PLASTICITY, 2008, 24 (05) :867-895
[3]   Metal additive manufacturing in aerospace: A review [J].
Blakey-Milner, Byron ;
Gradl, Paul ;
Snedden, Glen ;
Brooks, Michael ;
Pitot, Jean ;
Lopez, Elena ;
Leary, Martin ;
Berto, Filippo ;
du Plessis, Anton .
MATERIALS & DESIGN, 2021, 209
[4]   Selective laser melting of aluminum die-cast alloy-Correlations between process parameters, solidification conditions, and resulting mechanical properties [J].
Buchbinder, D. ;
Meiners, W. ;
Wissenbach, K. ;
Poprawe, R. .
JOURNAL OF LASER APPLICATIONS, 2015, 27
[5]   Self-consistent modelling of the plastic deformation of FCC polycrystals and its implications for diffraction measurements of internal stresses [J].
Clausen, B ;
Lorentzen, T ;
Leffers, T .
ACTA MATERIALIA, 1998, 46 (09) :3087-3098
[6]   Metal additive manufacturing: Technology, metallurgy and modelling [J].
Cooke, Shaun ;
Ahmadi, Keivan ;
Willerth, Stephanie ;
Herring, Rodney .
JOURNAL OF MANUFACTURING PROCESSES, 2020, 57 :978-1003
[7]  
Davis J.R., 1993, ALUMINUM ALUMINUM AL
[8]   Additive manufacturing of metallic components - Process, structure and properties [J].
DebRoy, T. ;
Wei, H. L. ;
Zuback, J. S. ;
Mukherjee, T. ;
Elmer, J. W. ;
Milewski, J. O. ;
Beese, A. M. ;
Wilson-Heid, A. ;
De, A. ;
Zhang, W. .
PROGRESS IN MATERIALS SCIENCE, 2018, 92 :112-224
[9]   Influence of Si precipitates on fracture mechanisms of AlSi10Mg parts processed by Selective Laser Melting [J].
Delahaye, J. ;
Tchuindjang, J. Tchoufang ;
Lecomte-Beckers, J. ;
Rigo, O. ;
Habraken, A. M. ;
Mertens, A. .
ACTA MATERIALIA, 2019, 175 :160-170
[10]   Indentation size effects in spherical nanoindentation analyzed by experiment and non-local crystal plasticity [J].
Engels, J. K. ;
Gao, S. ;
Amin, W. ;
Biswas, A. ;
Kostka, A. ;
Vajragupta, N. ;
Hartmaier, A. .
MATERIALIA, 2018, 3 :21-30