A minimal nontrivial example of higher-order evidence

被引:0
作者
Cole, Stephen R. [1 ]
Shook-Sa, Bonnie E. [2 ]
Zivich, Paul N. [1 ]
Edwards, Jessie K. [1 ]
机构
[1] Univ North Carolina, Gillings Sch Global Publ Hlth, Dept Epidemiol, Chapel Hill, NC USA
[2] Univ North Carolina, Gillings Sch Global Publ Hlth, Dept Biostat, Chapel Hill, NC USA
关键词
bias; measurement error; random error; systematic error;
D O I
10.1093/aje/kwae321
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
Higher-order evidence (ie, evidence about evidence) allows epidemiologists and other health data scientists to account for measurement error in validation data. Here, to illustrate the use of higher-order evidence, we provide a minimal nontrivial example of estimating the proportion and show how higher-order evidence can be used to construct sensitivity analyses. The proposed method provides a flexible approach to account for multiple levels of distortion in the results of epidemiologic studies.
引用
收藏
页码:886 / 888
页数:3
相关论文
共 38 条
  • [1] Higher-order evidence
    Stephen R. Cole
    Bonnie E. Shook-Sa
    Paul N. Zivich
    Jessie K. Edwards
    David B. Richardson
    Michael G. Hudgens
    European Journal of Epidemiology, 2024, 39 : 1 - 11
  • [2] Higher-order evidence
    Cole, Stephen R.
    Shook-Sa, Bonnie E.
    Zivich, Paul N.
    Edwards, Jessie K.
    Richardson, David B.
    Hudgens, Michael G.
    EUROPEAN JOURNAL OF EPIDEMIOLOGY, 2024, 39 (1) : 1 - 11
  • [3] Accurate higher-order likelihood inference on
    Cortese, Giuliana
    Ventura, Laura
    COMPUTATIONAL STATISTICS, 2013, 28 (03) : 1035 - 1059
  • [4] HIGHER-ORDER BIAS AND MSE OF NONLINEAR ESTIMATORS
    Bao, Yong
    Ullah, Aman
    PAKISTAN JOURNAL OF STATISTICS, 2009, 25 (04): : 587 - 594
  • [5] Speculative Equilibrium with Differences in Higher-Order Beliefs
    Han, Jungsuk
    Kyle, Albert S.
    MANAGEMENT SCIENCE, 2018, 64 (09) : 4317 - 4332
  • [6] EVALUATION OF BIAS IN HIGHER-ORDER SPECTRAL ESTIMATION
    Anh, V. V.
    Leonenko, N. N.
    Sakhno, L. M.
    THEORY OF PROBABILITY AND MATHEMATICAL STATISTICS, 2009, 80 : 1 - 14
  • [7] ALR: accelerated higher-order logistic regression
    Zaidi, Nayyar A.
    Webb, Geoffrey I.
    Carman, Mark J.
    Petitjean, Francois
    Cerquides, Jesus
    MACHINE LEARNING, 2016, 104 (2-3) : 151 - 194
  • [8] Efficient Parallel Algorithm for Estimating Higher-order Polyspectra
    Tomlinson, Joseph
    Jeong, Donghui
    Kim, Juhan
    ASTRONOMICAL JOURNAL, 2019, 158 (03)
  • [9] Simple estimators and inference for higher-order stochastic volatility models
    Ahsan, Md. Nazmul
    Dufour, Jean-Marie
    JOURNAL OF ECONOMETRICS, 2021, 224 (01) : 181 - 197
  • [10] Beware of the Bias - Statistical Performance Evaluation of Higher-Order Alphabet PUFs
    Frisch, Christoph
    Pehl, Michael
    PROCEEDINGS OF THE 2022 DESIGN, AUTOMATION & TEST IN EUROPE CONFERENCE & EXHIBITION (DATE 2022), 2022, : 1005 - 1010