New common fixed point theorems for quartet mappings on orthogonal S-metric spaces with applications

被引:1
作者
Samuel, Benitha Wises [1 ]
Mani, Gunaseelan [1 ]
Ganesh, Purushothaman [2 ]
Thabet, Sabri T. M. [1 ,3 ,4 ]
Kedim, Imed [5 ]
Vivas-Cortez, Miguel [6 ]
机构
[1] Saveetha Univ, Saveetha Inst Med & Tech Sci, Saveetha Sch Engn, Dept Math, Chennai 602105, Tamil Nadu, India
[2] St Josephs Coll Engn, Dept Math, Chennai 119, Tamil Nadu, India
[3] Univ Lahej, Radfan Univ Coll, Dept Math, Lahej, Yemen
[4] Korea Univ, Coll Sci, Dept Math, 145 Anam Ro, Seoul 02814, South Korea
[5] Prince Sattam bin Abdulaziz Univ, Coll Sci & Humanities Al Kharj, Dept Math, Al Kharj 11942, Saudi Arabia
[6] Pontifical Catholic Univ Ecuador, Fac Exact & Nat Sci, Sch Phys Sci & Math, Ave 12 octubre 1076 & Roca,Apartado Postal 17-01-2, Sede Quito, Ecuador
来源
JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS | 2025年 / 38卷 / 01期
关键词
Compatible mappings; S-metric space; orthogonal metric spaces; orthogonal S-metric space; common fixed point; MAPS;
D O I
10.22436/jmcs.038.01.06
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we extend the scope of fixed point theory by proving a common fixed point theorem applicable to quartet mappings defined on orthogonal S-metric spaces. Our theorems establish conditions under which the quartet mappings Phi, Psi, H, and K are orthogonal preserving, orthogonal continuous, and pairwise compatible mappings, possess a unique common fixed point. To elucidate the practical implications of our theoretical result, we present a concrete example illustrating its application. Finally, we demonstrate the versatility of our theorem by applying it to establish the existence and uniqueness of solutions for Volterra-type integral system, production-consumption equilibrium and fractional differential equations
引用
收藏
页码:80 / 97
页数:18
相关论文
共 43 条
[1]   A higher-order extension of Atangana-Baleanu fractional operators with respect to another function and a Gronwall-type inequality [J].
Abdeljawad, Thabet ;
Thabet, Sabri T. M. ;
Kedim, Imed ;
Ayari, M. Iadh ;
Khan, Aziz .
BOUNDARY VALUE PROBLEMS, 2023, 2023 (01)
[2]   Fixed point theorems on rectangular S-metric spaces [J].
Adewale, O. K. ;
Iluno, C. .
SCIENTIFIC AFRICAN, 2022, 16
[3]  
Afra J. M., 2015, Int. J. Math. Anal., V9, P117
[4]   Existence of Urysohn and Atangana-Baleanu fractional integral inclusion systems solutions via common fixed point of multi-valued operators [J].
Amiri, Pari ;
Samei, Mohammad Esmael .
CHAOS SOLITONS & FRACTALS, 2022, 165
[5]  
Banach S., 1922, Fundam Math, V3, P133, DOI [10.4064/fm-3-1-133-181, DOI 10.4064/FM-3-1-133-181]
[6]   Fixed Point of Orthogonal F-Suzuki Contraction Mapping on O-Complete b-Metric Spaces with Applications [J].
Beg, Ismat ;
Mani, Gunaseelan ;
Gnanaprakasam, Arul Joseph .
JOURNAL OF FUNCTION SPACES, 2021, 2021
[7]  
Chouchan P., 2013, International Mathematical Forum, V8, P1287, DOI DOI 10.12988/IMF.2013.35105
[8]  
Eshaghi Gordji M., 2017, Journal of Linear and Topological Algebra (JLTA), V6, P251
[9]  
Gholidahneh A., 2017, Math. Interdiscip. Res., V2, P71
[10]   New Fixed Point Results in Orthogonal B-Metric Spaces with Related Applications [J].
Gnanaprakasam, Arul Joseph ;
Mani, Gunaseelan ;
Ege, Ozgur ;
Aloqaily, Ahmad ;
Mlaiki, Nabil .
MATHEMATICS, 2023, 11 (03)