A comprehensive survey on synthetic infrared image synthesis

被引:0
作者
Upadhyay, Avinash [1 ]
Sharma, Manoj [1 ]
Mukherjee, Prerana [2 ]
Singhal, Amit [3 ]
Lall, Brejesh [4 ]
机构
[1] Bennett Univ, SEAS, Dept Elect & Commun Engn, Greater Noida 201310, Uttar Pradesh, India
[2] Jawaharlal Nehru Univ, Sch Engn, New Delhi 110067, India
[3] Netaji Subhas Univ Technol, Dept Elect & Commun Engn, New Delhi 110078, India
[4] IIT Delhi, Elect Engn Dept, New Delhi 110016, India
关键词
Infrared synthesis; Synthetic image generation; Synthetic video generation; Infrared imaging; MOVING TARGET DETECTION; SIMULATION TOOL; PHYSICS; GENERATION; FRAMEWORK;
D O I
10.1016/j.infrared.2025.105745
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Synthetic infrared (IR) scene and target generation is an important computer vision problem as it allows the generation of realistic IR images and targets for training and testing of various applications, such as remote sensing, surveillance, and target recognition. It also helps reduce the cost and risk associated with collecting real-world IR data. This survey paper aims to provide a comprehensive overview of the conventional mathematical modeling-based methods and deep learning-based methods used for generating synthetic IR scenes and targets. The paper discusses the importance of synthetic IR scene and target generation and briefly covers the mathematics of black body and grey body radiations, as well as IR image-capturing methods. The potential use cases of synthetic IR scenes and target generation are also described, highlighting the significance of these techniques in various fields. Additionally, the paper explores possible new ways of developing new techniques to enhance the efficiency and effectiveness of synthetic IR scenes and target generation while highlighting the need for further research to advance this field.
引用
收藏
页数:19
相关论文
共 50 条
[41]   Human Attribute Recognition- A Comprehensive Survey [J].
Yaghoubi, Ehsan ;
Khezeli, Farhad ;
Borza, Diana ;
Aruna Kumar, S., V ;
Neves, Joao ;
Proenca, Hugo .
APPLIED SCIENCES-BASEL, 2020, 10 (16)
[42]   A Comprehensive Survey on Multi-View Clustering [J].
Fang, Uno ;
Li, Man ;
Li, Jianxin ;
Gao, Longxiang ;
Jia, Tao ;
Zhang, Yanchun .
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (12) :12350-12368
[43]   AI Methods in Algorithmic Composition: A Comprehensive Survey [J].
David Fernandez, Jose ;
Vico, Francisco .
JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2013, 48 :513-582
[44]   A comprehensive survey and taxonomy of sign language research [J].
El-Alfy, El-Sayed M. ;
Luqman, Hamzah .
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2022, 114
[45]   Federated Learning on Multimodal Data: A Comprehensive Survey [J].
Lin, Yi-Ming ;
Gao, Yuan ;
Gong, Mao-Guo ;
Zhang, Si-Jia ;
Zhang, Yuan-Qiao ;
Li, Zhi-Yuan .
MACHINE INTELLIGENCE RESEARCH, 2023, 20 (04) :539-553
[46]   A Comprehensive Survey on Sentiment Analysis in Twitter Data [J].
Krishnan, Hema ;
Elayidom, M. Sudheep ;
Santhanakrishnan, T. .
INTERNATIONAL JOURNAL OF DISTRIBUTED SYSTEMS AND TECHNOLOGIES, 2022, 13 (05)
[47]   GPU Virtualization and Scheduling Methods: A Comprehensive Survey [J].
Hong, Cheol-Ho ;
Spence, Ivor ;
Nikolopoulos, Dimitrios S. .
ACM COMPUTING SURVEYS, 2017, 50 (03)
[48]   Facial feature point detection: A comprehensive survey [J].
Wang, Nannan ;
Gao, Xinbo ;
Tao, Dacheng ;
Yang, Heng ;
Li, Xuelong .
NEUROCOMPUTING, 2018, 275 :50-65
[49]   Enabling technologies for Web 3.0: A comprehensive survey [J].
Hassan, Md Arif ;
Jamshidi, Mohammad ;
Manh, Bui Duc ;
Chu, Nam H. ;
Nguyen, Chi-Hieu ;
Hieu, Nguyen Quang ;
Nguyen, Cong T. ;
Hoang, Dinh Thai ;
Nguyen, Diep N. ;
Huynh, Nguyen Van ;
Abu Alsheikh, Mohammad ;
Dutkiewicz, Eryk .
COMPUTER NETWORKS, 2025, 264
[50]   Quantum Natural Language Processing: A Comprehensive Survey [J].
Varmantchaonala, Charles M. ;
Fendji, Jean Louis K. E. ;
Schoning, Julius ;
Atemkeng, Marcellin .
IEEE ACCESS, 2024, 12 :99578-99598