Agile cavity ringdown spectroscopy enabled by moderate optical feedback to a quantum cascade laser

被引:2
作者
Nie, Qinxue [1 ]
Peng, Yibo [1 ]
Chen, Qiheng [1 ]
Liu, Ningwu [1 ]
Wang, Zhen [1 ]
Wang, Cheng [2 ]
Ren, Wei [1 ]
机构
[1] Chinese Univ Hong Kong, Dept Mech & Automat Engn, Hong Kong 999077, Peoples R China
[2] ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai 201210, Peoples R China
基金
中国国家自然科学基金;
关键词
cavity ringdown spectroscopy; optical feedback; quantum cascade laser; gas sensing; ENHANCED ABSORPTION-SPECTROSCOPY; DOWN SPECTROSCOPY; FREQUENCY STABILIZATION; BY-MODE; NOISE;
D O I
10.29026/oea.2024.240077
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Cavity ringdown spectroscopy (CRDS), relying on measuring the decay time of photons inside a high-finesse optical cavity, offers an important analytical tool for chemistry, physics, environmental science, and biology. Through the reflection of a slight amount of phase-coherent light back to the laser source, the resonant optical feedback approach effectively couples the laser beam into the optical cavity and achieves a high signal-to-noise ratio. However, the need for active phase- locking mechanisms complicates the spectroscopic system, limiting its primarily laboratory-based use. Here, we report how passive optical feedback can be implemented in a quantum cascade laser (QCL) based CRDS system to address this issue. Without using any phase-locking loops, we reflect a moderate amount of light (-18.2 dB) to a continuous-wave QCL simply using a fixed flat mirror, narrowing the QCL linewidth from 1.2 MHz to 170 kHz and significantly increasing the laser-cavity coupling efficiency. To validate the method's feasibility and effectiveness, we measured the absorption line (P(18e), 2207.62 cm-1 ) of N2O in a Fabry-Perot cavity with a high finesse of similar to 52000 and an inter-mirror distance of 33 cm. This agile approach paves the way for revolutionizing existing analytical tools by offering compact and high-fidelity mid-infrared CRDS systems.
引用
收藏
页数:9
相关论文
共 41 条
[1]  
Argence B, 2015, NAT PHOTONICS, V9, P456, DOI [10.1038/NPHOTON.2015.93, 10.1038/nphoton.2015.93]
[2]   Optical feedback cavity enhanced absorption spectroscopy with diode lasers [J].
Baran, Stuart G. ;
Hancock, Gus ;
Peverall, Robert ;
Ritchie, Grant A. D. ;
van Leeuwen, Nicola J. .
ANALYST, 2009, 134 (02) :243-249
[3]   Cavity ring-down spectroscopy: Experimental schemes and applications [J].
Berden, G ;
Peeters, R ;
Meijer, G .
INTERNATIONAL REVIEWS IN PHYSICAL CHEMISTRY, 2000, 19 (04) :565-607
[4]   Optical feedback frequency stabilized cavity ring-down spectroscopy [J].
Burkart, Johannes ;
Romanini, Daniele ;
Kassi, Samir .
OPTICS LETTERS, 2014, 39 (16) :4695-4698
[5]   Quantum cascade lasers [J].
Capasso, F ;
Gmachl, C ;
Sivco, DL ;
Cho, AY .
PHYSICS TODAY, 2002, 55 (05) :34-40
[6]   On-chip readout plasmonic mid-IR gas sensor [J].
Chen, Qin ;
Liang, Li ;
Zheng, Qilin ;
Zhang, Yaxin ;
Wen, Long .
OPTO-ELECTRONIC ADVANCES, 2020, 3 (07) :1-13
[7]   Measurement of the 13C/12C of Atmospheric CH4 Using Near-Infrared (NIR) Cavity Ring-Down Spectroscopy [J].
Chen, Y. ;
Lehmann, Kevin. K. ;
Kessler, J. ;
Lollar, B. Sherwood ;
Couloume, G. Lacrampe ;
Onstottt, T. C. .
ANALYTICAL CHEMISTRY, 2013, 85 (23) :11250-11257
[8]  
Coldren LA, 2012, Diode Lasers and Photonic Integrated Circuits
[9]   Measuring the absorption coefficient of biological materials using integrating cavity ring-down spectroscopy [J].
Cone, Michael T. ;
Mason, John D. ;
Figueroa, Eleonora ;
Hokr, Brett H. ;
Bixler, Joel N. ;
Castellanos, Cherry C. ;
Noojin, Gary D. ;
Wigle, Jeffrey C. ;
Rockwell, Benjamin A. ;
Yakovlev, Vladislav V. ;
Fry, Edward S. .
OPTICA, 2015, 2 (02) :162-168
[10]   Laser sensors for energy systems and process industries: Perspectives and directions [J].
Farooq, Aamir ;
Alquaity, Awad B. S. ;
Raza, Mohsin ;
Nasir, Ehson F. ;
Yao, Shunchun ;
Ren, Wei .
PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 2022, 91