Impact of Maxwell-Cattaneo effect on thermal convection instability in vertical porous layer saturated with an Oldroyd-B fluid

被引:1
作者
Jia, Beinan [1 ]
Jian, Yongjun [2 ,3 ]
机构
[1] Inner Mongolia Univ, Sch Math Sci, Hohhot 010021, Inner Mongolia, Peoples R China
[2] Donghua Univ, Inst Nonlinear Sci, Shanghai 201620, Peoples R China
[3] Donghua Univ, Sch Math & Stat, Shanghai 201620, Peoples R China
基金
中国国家自然科学基金;
关键词
thermal convection instability; Maxwell-Cattaneo effect; Oldroyd-B fluid; vertical porous layer; VISCOELASTIC FLUIDS; NATURAL-CONVECTION; STABILITY ANALYSIS; HEAT; FLOW; SLAB; NONEQUILIBRIUM; PROOF; MEDIA;
D O I
10.1088/1873-7005/ad9fa7
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The investigation focuses on the Maxwell-Cattaneo (MC) effect on the thermal convection instability in a vertical porous layer saturated with an Oldroyd-B fluid. The MC effect modifies the conventional Fourier's law for temperature by incorporating the upper convective Oldroyd derivative. The flow through the porous layer is modeled by the Darcy-Oldroyd model. Using the Chebyshev collocation method addresses an Orr-Sommerfeld eigenvalue problem. Analysis of temporal growth rates reveals that the MC effect causes the originally stable flow to become unstable. Furthermore, the study finds double impacts of the MC effect on convection instability depending on whether it is primarily influenced by the fluid or the solid phase. Neutral stability curves highlight a critical threshold for the averaged Cattaneo number (Ca) of both solid and fluid. When Ca falls below this critical value, instability is suppressed, but when it exceeds this value, instability is magnified. The analysis also reveals that viscoelasticity parameters can impact the system by either stabilizing or destabilizing it. A rise in the retardation time parameter (lambda 2) exerts a stabilizing influence, whereas an increase in the relaxation time parameter (lambda 1) exhibits a destabilizing effect.
引用
收藏
页数:18
相关论文
共 56 条
[1]   CONVECTIVE INSTABILITIES OF A MAXWELL-CATTANEO POROUS LAYER [J].
Al Hajri, Amal R. ;
Eltayeb, Ibrahim A. ;
Rahman, Mohammad M. .
JOURNAL OF POROUS MEDIA, 2023, 26 (02) :89-114
[2]  
Alishaev MG., 1975, Izvestya Vuzov, Neft I Gaz, V6, P71
[3]   Effects of viscous dissipation on the convective instability of viscoelastic mixed convection flows in porous media [J].
Alves, L. S. de B. ;
Barletta, A. ;
Hirata, S. ;
Ouarzazi, M. N. .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2014, 70 :586-598
[4]   MHD micropolar nanofluid with non Fourier and non Fick's law [J].
Atif, S. M. ;
Kamran, A. ;
Shah, S. .
INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2021, 122
[5]   Buoyant flow instability induced by a uniform internal heat source in a vertical annular porous layer [J].
Barletta, A. ;
Rees, D. A. S. ;
Pulvirenti, B. .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2022, 194
[6]   Anisotropy and the Onset of the Thermoconvective Instability in a Vertical Porous Layer [J].
Barletta, A. ;
Celli, M. .
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2021, 143 (10)
[7]   Instability of parallel buoyant flow in a vertical porous layer with an internal heat source [J].
Barletta, A. ;
Celli, M. .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2017, 111 :1063-1070
[8]   A proof that convection in a porous vertical slab may be unstable [J].
Barletta, A. .
JOURNAL OF FLUID MECHANICS, 2015, 770 :273-288
[9]   Instability of stationary two-dimensional mixed convection across a vertical porous layer [J].
Barletta, Antonio .
PHYSICS OF FLUIDS, 2016, 28 (01)
[10]   On oscillatory convection with the Cattaneo-Christov hyperbolic heat-flow model [J].
Bissell, J. J. .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2015, 471 (2175)