Promoting Layered Oxide Cathodes Based on Structural Reconstruction for Sodium-Ion Batteries: Reversible Phase Transition, Stable Interface Regulation, and Multifunctional Intergrowth Structure

被引:9
作者
Liu, Xin-Yu [1 ,2 ]
Li, Shi [3 ]
Zhu, Yan-Fang [1 ,2 ]
Zhang, Xin-Yu [1 ,2 ]
Su, Yu [1 ,2 ]
Li, Meng-Ying [1 ,2 ]
Li, Hong-Wei [1 ,2 ]
Chen, Bing-Bing [1 ,2 ]
Liu, Yi-Feng [1 ,2 ]
Xiao, Yao [1 ,2 ]
机构
[1] Wenzhou Univ, Coll Chem & Mat Engn, Wenzhou 325035, Peoples R China
[2] Wenzhou Univ Technol Innovat Inst Carbon Neutraliz, Wenzhou Key Lab Sodium Ion Batteries, Wenzhou 325035, Peoples R China
[3] Hangzhou Hangyang Chem & Med Engn Lo Ltd, Hangzhou 310000, Peoples R China
基金
中国国家自然科学基金;
关键词
layered oxide cathodes; multifunctional intergrowth structure; reversible phase transitions; sodium-ion batteries; stable interface regulation; HIGH-ENERGY; HIGH-PERFORMANCE; ELECTROCHEMICAL PROPERTIES; HIGH-CAPACITY; LONG-LIFE; REDOX CHEMISTRY; METAL OXIDES; P2-TYPE; NA0.44MNO2; STABILITY;
D O I
10.1002/adfm.202414130
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Layered transition-metal oxides (NaxTMO2) are one of the most promising cathode materials for sodium-ion batteries due to their high theoretical specific capacities, good conductivity, and environmental friendliness. However, several key scientific issues of NaxTMO2 cathode materials still persist in practical applications: i) complex phase transitions during the charge/discharge process owing to the slip of the transition-metal layer; ii) the tendency for the interface to react with the electrolyte, resulting in structure degradation, and iii) reactions between active materials and H2O as well as CO2 on exposure to air in the environment to form alkaline substances on the surface. To understand electrochemical storage mechanisms and solve these problems, several modification strategies of NaxTMO2 have been reported recently, including bulk doping, concentration gradient structure design, interface regulation, and intergrowth structure construction. This review focuses on reversible phase transitions, stable interface regulation, and multifunctional intergrowth structure of the NaxTMO2 material from the inside to the outside. The future research directions for NaxTMO2 are also analyzed, providing guidance for the development of commercial layered oxides for next-generation energy storage systems. This review focuses on the challenges of NaxTMO2, including irreversible phase transitions, especially at high voltage, interfacial degradation caused by adverse reactions between the electrolyte and the material, and structural breakdown on exposure to air, which can be solved through bulk doping, gradient structure designing, interface coating, interface coating combined with doping synergy, and intergrowth structure designing. image
引用
收藏
页数:41
相关论文
共 202 条
[1]   Challenges and protective strategies on zinc anode toward practical aqueous zinc-ion batteries [J].
Al-Abbasi, Malek ;
Zhao, Yanrui ;
He, Honggang ;
Liu, Hui ;
Xia, Huarong ;
Zhu, Tianxue ;
Wang, Kexuan ;
Xu, Zhu ;
Wang, Huibo ;
Zhang, Wei ;
Lai, Yuekun ;
Ge, Mingzheng .
CARBON NEUTRALIZATION, 2024, 3 (01) :108-141
[2]   Ultrathin dense LiF coverage coupled with a near-surface gradient fluorination lattice enables fast-charging long-life 4.6 V LiCoO2 [J].
Bi, Zhihong ;
Yi, Zonglin ;
Zhang, Liangzhu ;
Wang, Gongrui ;
Zhang, Anping ;
Liao, Shihao ;
Zhao, Qinghe ;
Peng, Zhangquan ;
Song, Li ;
Wang, Yi ;
Zhao, Zhiwei ;
Wei, Shiqiang ;
Zhao, Wenguang ;
Shi, Xiaoyu ;
Li, Mingrun ;
Ta, Na ;
Mi, Jinxing ;
Li, Shunning ;
Das, Pratteek ;
Cui, Yi ;
Chen, Chengmeng ;
Pan, Feng ;
Wu, Zhong-Shuai .
ENERGY & ENVIRONMENTAL SCIENCE, 2024, 17 (08) :2765-2775
[3]   Na0.67Mn1-xMgxO2 (0 ≤ x ≤ 0.2): a high capacity cathode for sodium-ion batteries [J].
Billaud, Juliette ;
Singh, Gurpreet ;
Armstrong, A. Robert ;
Gonzalo, Elena ;
Roddatis, Vladimir ;
Armand, Michel ;
Rojob, Teofilo ;
Bruce, Peter G. .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (04) :1387-1391
[4]   Exploration of Phase Compositions, Crystal Structures, and Electrochemical Properties of NaxFeyMn1-yO2 Sodium Ion Battery Materials [J].
Birgisson, Steinar ;
Christiansen, Troels Lindahl ;
Iversen, Bo B. .
CHEMISTRY OF MATERIALS, 2018, 30 (19) :6636-6645
[5]   Mg-doping for improved long-term cyclability of layered Na-ion cathode materials - The example of P2-type NaxMg0.11Mn0.89O2 [J].
Buchholz, Daniel ;
Vaalma, Christoph ;
Chagas, Luciana Gomes ;
Passerini, Stefano .
JOURNAL OF POWER SOURCES, 2015, 282 :581-585
[6]   P-type NaxNi0.22Co0.11Mn0.66O2 materials: linking synthesis with structure and electrochemical performance [J].
Chagas, L. G. ;
Buchholz, D. ;
Vaalma, C. ;
Wu, L. ;
Passerini, S. .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (47) :20263-20270
[7]   Research progress of layered P2-Na2/3Ni1/3Mn2/3O2 cathode material for sodium ion batteries [J].
Chang, Longjiao ;
Yang, Ruifen ;
Bi, Xiaolong ;
Yang, Wei ;
Cai, Kedi ;
Wei, Anlu ;
Liu, Jianan .
JOURNAL OF ENERGY STORAGE, 2023, 73
[8]   From Li-Ion Batteries toward Na-Ion Chemistries: Challenges and Opportunities [J].
Chayambuka, Kudakwashe ;
Mulder, Grietus ;
Danilov, Dmitri L. ;
Notten, Peter H. L. .
ADVANCED ENERGY MATERIALS, 2020, 10 (38)
[9]   P2/O3 biphasic Fe/Mn-based layered oxide cathode with ultrahigh capacity and great cyclability for sodium ion batteries [J].
Chen, Cong ;
Huang, Weiyuan ;
Li, Yiwei ;
Zhang, Mingjian ;
Nie, Kaiqi ;
Wang, Jiaou ;
Zhao, Wenguang ;
Qi, Rui ;
Zuo, Changjian ;
Li, Zhibo ;
Yi, Haocong ;
Pan, Feng .
NANO ENERGY, 2021, 90
[10]   Hard carbon for sodium storage: mechanism and optimization strategies toward commercialization [J].
Chen, Dequan ;
Zhang, Wen ;
Luo, Kangying ;
Song, Yang ;
Zhong, Yanjun ;
Liu, Yuxia ;
Wang, Gongke ;
Zhong, Benhe ;
Wu, Zhenguo ;
Guo, Xiaodong .
ENERGY & ENVIRONMENTAL SCIENCE, 2021, 14 (04) :2244-2262