An Improved YOLOv7-Tiny-Based Algorithm for Wafer Surface Defect Detection

被引:0
作者
Li, Mengyun [1 ]
Wang, Xueying [1 ]
Zhang, Hongtao [2 ]
Hu, Xiaofeng [1 ]
机构
[1] China Jiliang Univ, Coll Metrol & Measurement Instrument, Hangzhou 310000, Zhejiang, Peoples R China
[2] Zhejiang Sanhua Automot Components Co Ltd, Hangzhou 310000, Zhejiang, Peoples R China
来源
IEEE ACCESS | 2025年 / 13卷
关键词
Semiconductor device modeling; Feature extraction; Convolution; Accuracy; Defect detection; Convolutional neural networks; Classification algorithms; Machine learning algorithms; Data models; Computational modeling; YOLOv7-tiny; silicon wafer; object detection; deep learning; RECOGNITION;
D O I
10.1109/ACCESS.2025.3528242
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Wafer surface defect detection is a critical component in the chip manufacturing process. To address the shortcomings of manual inspection and the limitations of existing machine learning methods, this paper proposes a wafer defect detection algorithm based on an improved YOLOv7-tiny. First, a coordinate attention (CA) module is incorporated into the feature extraction network to enhance the network's ability to learn features at defect locations. Next, a lightweight convolutional module, ghost shuffle convolution (GSConv), is introduced into the feature fusion network to reduce the network's parameter count while maintaining a certain level of detection accuracy. Finally, the loss function is optimized by adopting IoU with minimum points distance (MPDIoU) to address issues such as small sizes and dense distributions. Experiments conducted on a self-constructed dataset show that the improved algorithm achieved a mean Average Precision (mAP) of 90.1%, representing a 3.2% increase over the original algorithm. The model size is only 5.85MB and the detection speed has been effectively enhanced, providing valuable insights for research in industrial real-time detection applications.
引用
收藏
页码:10724 / 10734
页数:11
相关论文
共 50 条
  • [31] An Improved YOLOv7 Tiny Algorithm for Vehicle and Pedestrian Detection with Occlusion in Autonomous Driving
    Su, Jian
    Wang, Fang
    Zhuang, Wei
    CHINESE JOURNAL OF ELECTRONICS, 2025, 34 (01) : 282 - 294
  • [32] Improved Plate Defect Detection Algorithm Based on YOLOv5
    Wang, Zijie
    Wang, Lan
    Zheng, Sihui
    IOT AS A SERVICE, IOTAAS 2023, 2025, 585 : 371 - 384
  • [33] Improved Yolov5 Algorithm for Surface Defect Detection of Solar Cell
    Li, Pengjie
    Shan, Shuo
    Zeng, Pengzhong
    Wei, Haikun
    2023 35TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2023, : 3601 - 3605
  • [34] A Terminal Tube Text Detection and Recognition Method Based on Improved YOLOv7-Tiny and CRNN
    Liao, Huilian
    Du, Xingwei
    He, Luhang
    Wang, Shanlei
    Yao, Meng
    Zou, Hongbo
    IEEE ACCESS, 2024, 12 : 96358 - 96369
  • [35] Lightweight strip steel defect detection algorithm based on improved YOLOv7
    Lu, Jianbo
    Yu, MiaoMiao
    Liu, Junyu
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [36] Track Defect Detection Based on Improved YOLOv5s
    Zhao, Qinjun
    Fang, Shanchang
    Li, Yueyang
    Shang, Hongwei
    Zhang, Han
    Shen, Tao
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2025,
  • [37] Transparent Component Defect Detection Method Based on Improved YOLOv7 Algorithm
    Xiao, Qixun
    Huang, Jingde
    Huang, Zhangyu
    Li, Chenyu
    Xu, Jie
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2023, 37 (14)
  • [38] Pavement Defect Detection Algorithm Based on Improved YOLOv7 Complex Background
    Zou, Chunlong
    Huang, Peile
    Wang, Shenghuai
    Wang, Chen
    Wang, Hongxia
    IEEE ACCESS, 2024, 12 : 32870 - 32880
  • [39] Defect detection of polaroid based on YOLOv3-Tiny-D algorithm
    Li C.
    Xie G.
    Wang Y.
    Xie X.
    Liu R.
    Jisuanji Jicheng Zhizao Xitong/Computer Integrated Manufacturing Systems, CIMS, 2022, 28 (03): : 787 - 797
  • [40] A Detection Algorithm for Surface Defects of Printed Circuit Board Based on Improved YOLOv8
    Yao, Lei
    Zhao, Bing
    Wang, Xihui
    Mei, Sihan
    Chi, Yulun
    IEEE ACCESS, 2024, 12 : 170227 - 170242