Enhanced salient object detection in remote sensing images via dual-stream semantic interactive network

被引:0
作者
Ge, Yanliang [1 ]
Liang, Taichuan [1 ]
Ren, Junchao [1 ]
Chen, Jiaxue [1 ]
Bi, Hongbo [1 ]
机构
[1] Northeast Petr Univ, Sch Elect Informat Engn, Daqing 163000, Peoples R China
基金
中国国家自然科学基金;
关键词
Salient object detection; Remote sensing images; Feature interaction; Attention mechanism; Dual-stream network;
D O I
10.1007/s00371-024-03713-8
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Salient object detection in remote sensing images (RSI-SOD) aims to identify the most prominent regions within complex RSI scenes. Current convolutional neural network (CNN)-based approaches struggle to capture long-distance dependencies, limiting their performance. To address this, we propose a novel dual-stream semantic interactive network (DSINet). Specifically, the model combines the advantages of Transformer and CNN to simultaneously model both global relationships and local details via the dual-stream architecture. It comprises three key modules: a multi-scale feature enhancement module to enhance feature representations across scales, a cross-attention complementary mining module to explore complementary cues between Transformer and CNN features, and a cross-layer feature interaction module to mitigate inconsistencies between adjacent layers. Extensive experiments on benchmark datasets demonstrate that DSINet achieves superior performance compared to state-of-the-art methods, effectively identifying salient objects in challenging RSI scenes. The code and results of our method are available at https://github.com/dqxfj99/DSINet.
引用
收藏
页码:5153 / 5169
页数:17
相关论文
共 81 条
  • [1] Achanta R, 2009, PROC CVPR IEEE, P1597, DOI 10.1109/CVPRW.2009.5206596
  • [2] SThy-Net: a feature fusion-enhanced dense-branched modules network for small thyroid nodule classification from ultrasound images
    Al-Jebrni, Abdulrhman H.
    Ali, Saba Ghazanfar
    Li, Huating
    Lin, Xiao
    Li, Ping
    Jung, Younhyun
    Kim, Jinman
    Feng, David Dagan
    Sheng, Bin
    Jiang, Lixin
    Du, Jing
    [J]. VISUAL COMPUTER, 2023, 39 (08) : 3675 - 3689
  • [3] Ali SG., 2024, Visual Comput, V26, P1
  • [4] Aggregating transformers and CNNs for salient object detection in optical remote sensing images
    Bao, Liuxin
    Zhou, Xiaofei
    Zheng, Bolun
    Yin, Haibing
    Zhu, Zunjie
    Zhang, Jiyong
    Yan, Chenggang
    [J]. NEUROCOMPUTING, 2023, 553
  • [5] Salient Object Detection: A Benchmark
    Borji, Ali
    Cheng, Ming-Ming
    Jiang, Huaizu
    Li, Jia
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2015, 24 (12) : 5706 - 5722
  • [6] Cai Xinhao, 2024, 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), P27706, DOI 10.1109/CVPR52733.2024.02617
  • [7] Carion Nicolas, 2020, Computer Vision - ECCV 2020. 16th European Conference. Proceedings. Lecture Notes in Computer Science (LNCS 12346), P213, DOI 10.1007/978-3-030-58452-8_13
  • [8] DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs
    Chen, Liang-Chieh
    Papandreou, George
    Kokkinos, Iasonas
    Murphy, Kevin
    Yuille, Alan L.
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) : 834 - 848
  • [9] Video Saliency Detection via Sparsity-Based Reconstruction and Propagation
    Cong, Runmin
    Lei, Jianjun
    Fu, Huazhu
    Porikli, Fatih
    Huang, Qingming
    Hou, Chunping
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 28 (10) : 4819 - 4831
  • [10] Review of Visual Saliency Detection With Comprehensive Information
    Cong, Runmin
    Lei, Jianjun
    Fu, Huazhu
    Cheng, Ming-Ming
    Lin, Weisi
    Huang, Qingming
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2019, 29 (10) : 2941 - 2959