NH2-functionalized InIIIDyIII-organic frameworks for efficient catalytic performance on chemical fixation of CO2 and knoevenagel condensation

被引:1
|
作者
Ren, Meiyu [1 ]
Fei, Yang [1 ]
Gao, Yanpeng [2 ]
Fan, Liming [1 ]
Hu, Tuoping [1 ]
Zhang, Xiutang [1 ]
机构
[1] North Univ China, Sch Chem & Chem Engn, Shanxi Key Lab Adv Carbon Based Electrode Mat, Taiyuan 030051, Peoples R China
[2] Ordos Inst Technol, Coll Chem Engn, Ordos 017000, Peoples R China
基金
中国国家自然科学基金;
关键词
Heterometallic mofs; Amino-modification; Heterogenous catalyst; Co2; cycloaddition; Knoevenagel condensation;
D O I
10.1016/j.molstruc.2025.141361
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Generally, incorporating functional groups into the inner surfaces of nanoporous metal-organic frameworks (MOFs) can substantially enhance their favourable properties. This concept led to the design and synthesis of an amino-functionalized ligand known as 2,4-di(2-amino-4,6-dicarboxylphenyl)-6-(2,4-dicarboxylphenyl)pyridine (H6TDP-NH2). Consequently, with the aid of H6TDP-NH2, we generated a robust heterometallic InIIIDyIIIorganic framework of {(Me2NH2)3[InDy2(TDP-NH2)2]center dot 5DMF center dot 4H2O}n (InDy-MOF), which was built on the exquisite combination of [In(III)(CO2)4] units and [Dy(III)2(CO2)8] SBUs and characterized by the excellent features such as nano-caged voids with amino-functionalized inner surface, enormous permanent porosity and extraordinary surface area. Due to the cooperative action of Lewis acid-base interactions such as amino groups, free oxygen atoms, open metal sites, and Npyridine atoms, InDy-MOF exhibits highly efficient catalytic activity on the cycloaddition of CO2 with epoxides under mild solvent-free conditions and Knoevenagel condensation of aldehydes and malononitrile. Therefore, these results confirmed that a resource-intensive and environmentfriendly integrated heterogeneous catalyst could be uncomplicatedly developed by introducing amino groups on existing organic ligands, especially which had been proven to be an efficient pillar in previously documented porous MOFs.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] One Robust Microporous TmIII-Organic Framework for Highly Catalytic Activity on Chemical CO2 Fixation and Knoevenagel Condensation
    Chen, Hongtai
    Hu, Tuoping
    Fan, Liming
    Zhang, Xiutang
    INORGANIC CHEMISTRY, 2021, 60 (02) : 1029 - 1037
  • [2] Catalytic Application of Metal-Organic Frameworks for Chemical Fixation of CO2 into Cyclic Carbonate
    Ji, Hoon
    Naveen, Kanagaraj
    Kim, Dongwoo
    Cho, Deug-Hee
    APPLIED CHEMISTRY FOR ENGINEERING, 2020, 31 (03): : 258 - 266
  • [3] Nanoporous {Y2}-Organic Frameworks for Excellent Catalytic Performance on the Cycloaddition Reaction of Epoxides with CO2 and Deacetalization-Knoevenagel Condensation
    Chen, Hongtai
    Liu, Shurong
    Lv, Hongxiao
    Qin, Qi-Pin
    Zhang, Xiutang
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (16) : 18589 - 18599
  • [4] CO2 Cycloaddition of Epichlorohydrin over NH2-Functionalized MIL-101
    Jang, Min-Seok
    Lee, Yu-Ri
    Ahn, Wha-Seung
    BULLETIN OF THE KOREAN CHEMICAL SOCIETY, 2015, 36 (01) : 363 - 366
  • [5] N-doping of β-ketoenamine based covalent organic frameworks for catalytic conversion of CO2 to cyclic carbonate and Knoevenagel condensation
    Wang, Qibiao
    Li, Yaqin
    Zhou, Mengdi
    Zhou, Junjie
    Liu, Xinru
    Yu, Xianglin
    Gao, Junkuo
    Liang, En
    Chen, Xiaohu
    Zhang, Yi
    Han, Bin
    Fan, Jun
    Li, Junbo
    MICROPOROUS AND MESOPOROUS MATERIALS, 2024, 364
  • [6] Strategies for Enhancing the Catalytic Performance of Metal-Organic Frameworks in the Fixation of CO2 into Cyclic Carbonates
    Taherimehr, Masoumeh
    Van de Voorde, Ben
    Wee, Lik H.
    Martens, Johan A.
    De Vos, Dirk E.
    Pescarmona, Paolo P.
    CHEMSUSCHEM, 2017, 10 (06) : 1283 - 1291
  • [7] Imidazolium ionic liquid functionalized UiO-66-NH2 as highly efficient catalysts for chemical fixation of CO2 into cyclic carbonates
    Wu, Yuanfeng
    Xiao, Yang
    Yuan, Hui
    Zhang, Zongqi
    Shi, Shengbin
    Wei, Ruiping
    Gao, Lijing
    Xiao, Guomin
    MICROPOROUS AND MESOPOROUS MATERIALS, 2021, 310
  • [8] Highly Robust {Ln4}-Organic Frameworks (Ln = Ho, Yb) for Excellent Catalytic Performance on Cycloaddition Reaction of Epoxides with CO2 and Knoevenagel Condensation
    Zhang, Tao
    Chen, Hongtai
    Liu, Shurong
    Lv, Hongxiao
    Zhang, Xiutang
    Li, Qiaoling
    ACS CATALYSIS, 2021, 11 (24) : 14916 - 14925
  • [9] Nanoporous {Pb3}-Organic Framework for Catalytic Cycloaddition of CO2 with Epoxides and Knoevenagel Condensation
    Zhao, Bo
    Li, Chong
    Hu, Tuoping
    Zhang, Xiutang
    ACS APPLIED NANO MATERIALS, 2023, 6 (24) : 23196 - 23206
  • [10] Quaternary Ammonium-Functionalized Mesoporous Covalent Organic Frameworks for Effective Catalytic CO2 Cycloaddition
    Huang, Jun
    Peng, Shiyu
    Du, Yihan
    Feng, Jianuo
    Li, Jiayue
    Su, Jian
    Zhang, Gen
    ACS APPLIED POLYMER MATERIALS, 2024, 6 (08) : 4607 - 4614