Mechanistic insight into hydration-enhanced electrochemical CO2 reduction on Ru single-atom catalysts: A computational investigation

被引:0
|
作者
Chen, Hui-Lung [1 ]
Shen, Yun-Yi [2 ,3 ]
Chen, Hsin-Tsung [2 ,3 ]
机构
[1] Chinese Culture Univ, Dept Chem & Mat Engn, Taipei 111, Taiwan
[2] Chung Yuan Christian Univ, R&D Ctr Membrane Technol, Dept Chem, Taoyuan City 320314, Taiwan
[3] Chung Yuan Christian Univ, Res Ctr Semicond Mat & Adv Opt, Taoyuan City 320314, Taiwan
来源
APPLIED SURFACE SCIENCE ADVANCES | 2025年 / 26卷
关键词
Electrocatalytic CO2 reduction; Electrocatalysis; Ru-doped graphene; Single-metal catalysts; DFT calculations; EFFICIENT ELECTROCATALYST; SUPPORTED SINGLE; CARBON-DIOXIDE; METAL; METHANOL; ENERGY; ELECTROREDUCTION; CHALLENGES; MONOLAYER; OXIDATION;
D O I
10.1016/j.apsadv.2025.100724
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Using density functional theory (DFT) calculations, we investigated the electrocatalytic reduction of CO2 on Ru-doped graphene (Ru/G3C) and its nitrogen-coordinated counterpart (Ru/G3N). We found that nitrogen doping significantly enhances CO2 adsorption energy by 0.695 eV. To account for water production under experimental conditions, we analyzed both catalysts with saturated water coverage (3H(2)O@Ru/G3C and 3H(2)O@Ru/G3N) and examined CO2 reduction pathways involving COOH* and HCOO* intermediates to identify the potential determining step (PDS). Under pristine conditions, CO2 conversion to CH4 predominantly follows the HCOO* pathway, with a limiting potential (U-L) of -0.263 V for the PDS of HCOOH to H2COOH. When water is saturated (3H(2)O@Ru/G3C), formic acid formation becomes favorable at low potentials, with a U-L of -0.862 eV for the HCOOH to H2COOH step, ultimately leading to methanol or methane at higher reducing potentials. For Ru/G3N, CH4 formation via either the HCOO* or COOH* pathway requires a higher reducing potential (similar to 1 eV), making CO generation the dominant product at lower potentials. Water saturation (3H(2)O@Ru/ G3N) lowers the PDS for CH4 formation to 0.338 eV but still results in CO as the primary product at low potentials, with methanol and methane emerging as possible products at higher potentials. Overall, Ru/G3N is more suited for CO production, with potential for multi-product formation under water-rich conditions.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Research progress on electrochemical CO2 reduction for Cu-based single-atom catalysts
    Li, Xiaojiao
    Yu, Xiaohu
    Yu, Qi
    SCIENCE CHINA-MATERIALS, 2023, 66 (10) : 3765 - 3781
  • [22] MXene-Based Single-Atom Catalysts for Electrochemical Reduction of CO2 to Hydrocarbon Fuels
    Athawale, A.
    Abraham, B. Moses
    Jyothirmai, M. V.
    Singh, Jayant K.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2023, 127 (51) : 24542 - 24551
  • [23] Unraveling electrochemical oxygen reduction mechanism on single-atom catalysts by a computational investigation
    Chen, Jyun-Wei
    Wu, Shiuan-Yau
    Chen, Hsin-Tsung
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2022, 46 (02) : 1032 - 1042
  • [24] Progress in photocatalytic CO2 reduction based on single-atom catalysts
    Hu, Wanyu
    Yang, Haiyue
    Wang, Chengyu
    RSC ADVANCES, 2023, 13 (30) : 20889 - 20908
  • [25] CO2 reduction on single-atom Ir catalysts with chemical functionalization
    Lin, Zheng-Zhe
    Li, Xi-Mei
    Chen, Xin-Wei
    Chen, Xi
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2022, 24 (06) : 3733 - 3740
  • [26] Single-Atom Catalysts on Covalent Organic Frameworks for CO2 Reduction
    Wang, Rui
    Yuan, Yufei
    Bang, Ki-Taek
    Kim, Yoonseob
    ACS MATERIALS AU, 2023, 3 (01): : 28 - 36
  • [27] Mo2CS2-MXene supported single-atom catalysts for efficient and selective CO2 electrochemical reduction
    Baskaran, Sambath
    Jung, Jaehoon
    APPLIED SURFACE SCIENCE, 2022, 592
  • [28] Recent advances in the rational design of single-atom catalysts for electrochemical CO2 reduction
    Gu, Huoliang
    Wu, Jing
    Zhang, Liming
    NANO RESEARCH, 2022, 15 (11) : 9747 - 9763
  • [29] Exploring Rational Design of Single-Atom Electrocatalysts for Efficient Electrochemical Reduction of CO2 to CO
    Ma, Joonhee
    Cho, Jin Hyuk
    Lee, Kangwon
    Kim, Soo Young
    KOREAN JOURNAL OF MATERIALS RESEARCH, 2023, 33 (02): : 29 - 46
  • [30] The atomic-level regulation of single-atom site catalysts for the electrochemical CO2 reduction reaction
    Qu, Qingyun
    Ji, Shufang
    Chen, Yuanjun
    Wang, Dingsheng
    Li, Yadong
    CHEMICAL SCIENCE, 2021, 12 (12) : 4201 - 4215