Effects of Biochar on Soil Organic Carbon Mineralization in Citrus Orchards

被引:0
|
作者
Ding, Zerui [1 ,2 ,3 ]
Huang, Rui [2 ,3 ]
Li, Xianliang [1 ]
Fan, Qijun [1 ]
Hu, Lening [2 ,3 ]
Liu, Shengqiu [1 ]
机构
[1] Guangxi Acad Specialty Crops, Guangxi Key Lab Germplasm Innovat & Utilizat Speci, Guilin 541004, Peoples R China
[2] Guangxi Normal Univ, Guangxi Key Lab Environm Proc & Remediat Ecol Frag, Guilin 541004, Peoples R China
[3] Guangxi Normal Univ, Minist Educ, Key Lab Ecol Rare & Endangered Species & Environm, Guilin 541004, Peoples R China
关键词
soil organic carbon mineralization; citrus peel biochar; cassava straw biochar; available phosphorus; available potassium; NUTRIENT DYNAMICS; ENZYME-ACTIVITIES; NITROGEN; IMPACTS;
D O I
10.3390/su16229967
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The primary ecological challenges in citrus orchards include soil acidification, nutrient depletion, and significant carbon dioxide emissions resulting from conventional cultivation practices. To address these challenges, citrus peel residues and cassava stalks underwent pyrolysis at 500 degrees C to generate biochars. Different proportions of these biochars (1%, 2%, and 4%) were applied under controlled laboratory conditions to assess their impact on the mineralization of soil organic carbon in citrus orchards. The results indicated that both types of biochar effectively regulated the soil pH to approximately 5.5. Significantly, the addition of 4% cassava stalk biochar significantly increased the levels of available phosphorus and potassium. The phosphorus levels rose by 512.55%, and the potassium levels surged by 1434.01%. Additionally, the soil organic carbon increased to 16.7 g/kg. Conversely, the citrus peel biochar decreased the availability of phosphorus but resulted in the highest increase in available potassium, at 1523.75%, and elevated the soil organic carbon content to 13 g/kg. Both types of biochar enhanced the soil organic carbon mineralization rate to varying extents with increasing application ratios, simultaneously boosting the cumulative amount of organic carbon mineralized. Among the treatments, cassava stalk biochar displayed the lowest C0/SOC ratio, of 0.169, indicating its superior carbon retention capacity. Furthermore, cassava stalk biochar showed inhibitory effects on soil catalase and urease activities within the citrus orchard. Overall, the application of 4% cassava stalk biochar appears to be more beneficial for nutrient regulation and carbon sequestration in citrus orchard soils, while also contributing to the reduction in soil acidification by adjusting pH levels.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Biochar accelerates soil organic carbon mineralization via rhizodeposit-activated Actinobacteria
    Fu, Yingyi
    Luo, Yu
    Auwal, Muhammad
    Singh, Bhupinder Pal
    Van Zwieten, Lukas
    Xu, Jianming
    BIOLOGY AND FERTILITY OF SOILS, 2022, 58 (05) : 565 - 577
  • [22] Dynamics of soil organic carbon mineralization and C fractions in paddy soil on application of rice husk biochar
    Munda, Sushmita
    Bhaduri, Debarati
    Mohanty, Sangita
    Chatterjee, Dibyendu
    Tripathi, Rahul
    Shahid, M.
    Kumar, Upendra
    Bhattacharyya, P.
    Kumar, Anjani
    Adak, Totan
    Jangde, Hemant K.
    Nayak, A. K.
    BIOMASS & BIOENERGY, 2018, 115 : 1 - 9
  • [23] Effects of compost, biochar and manure on carbon mineralization of biogas residues applied to soil
    Coban, H.
    Miltner, A.
    Centler, F.
    Kaestner, M.
    EUROPEAN JOURNAL OF SOIL SCIENCE, 2016, 67 (02) : 217 - 225
  • [24] Biochar dispersion in a tropical soil and its effects on native soil organic carbon
    Obia, Alfred
    Lyu, Jing
    Mulder, Jan
    Martinsen, Vegard
    Cornelissen, Gerard
    Smebye, Andreas Botnen
    Zimmerman, Andrew R.
    PLOS ONE, 2024, 19 (04):
  • [25] Effects of Rice Straw and Its Biochar Addition on Soil Labile Carbon and Soil Organic Carbon
    Yin Yun-feng
    He Xin-hua
    Gao Ren
    Ma Hong-liang
    Yang Yu-sheng
    JOURNAL OF INTEGRATIVE AGRICULTURE, 2014, 13 (03) : 491 - 498
  • [26] Effects of Rice Straw and Its Biochar Addition on Soil Labile Carbon and Soil Organic Carbon
    YIN Yun-feng
    HE Xin-hua
    GAO Ren
    MA Hong-liang
    YANG Yu-sheng
    Journal of Integrative Agriculture, 2014, 13 (03) : 491 - 498
  • [27] Carbon Mineralizability Determines Interactive Effects on Mineralization of Pyrogenic Organic Matter and Soil Organic Carbon
    Whitman, Thea
    Zhu, Zihua
    Lehmann, Johannes
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2014, 48 (23) : 13727 - 13734
  • [28] Citrus Orchards in Agroforestry, Organic, and Conventional Systems: Soil Quality and Functioning
    Pilon, Lucas Contarato
    Ambus, Jordano Vaz
    Blume, Elena
    Jacques, Rodrigo Josemar Seminoti
    Reichert, Jose Miguel
    SUSTAINABILITY, 2023, 15 (17)
  • [29] Organic carbon mineralization of the biochar and organic compost of poultry litter in an Argisol
    Tito, Gilvanise Alves
    Fernandes, Josely Dantas
    Garofalo Chaves, Lucia Helena
    Carvallo Guerra, Hugo Orlando
    Bento Dantas, Edilma Rodrigues
    SEMINA-CIENCIAS AGRARIAS, 2021, 42 (06): : 3167 - 3184
  • [30] Soil moisture and soil organic carbon coupled effects in apple orchards on the Loess Plateau, China
    Han, Lei
    Nan, Guowei
    He, Xinyu
    Wang, Jinghui
    Zhao, Jirong
    Zhang, Xiangqian
    SCIENTIFIC REPORTS, 2024, 14 (01):