Clinical phenotyping of septic shock with latent profile analysis: A retrospective multicenter study

被引:1
作者
Liu, Guanghao [1 ,2 ,3 ]
Wu, Ruoqiong [2 ,4 ]
He, Jun [2 ,4 ]
Xu, Yichang [2 ,4 ]
Han, Li [2 ,4 ]
Yu, Yingying [2 ,4 ]
Zhu, Haibo [1 ,2 ,3 ]
Guo, Yehan [2 ,5 ]
Fu, Hao [2 ,4 ]
Chen, Ting [1 ,2 ,4 ,6 ]
Zheng, Shixiang [2 ,7 ]
Shen, Xiaopei [1 ,2 ,3 ,4 ,5 ]
机构
[1] Fujian Med Univ, Sch Basic Med Sci, Fuzhou 350122, Peoples R China
[2] Fujian Med Univ, Inst Precis Med, Fujian Key Lab Med Bioinformat, Fuzhou 350122, Peoples R China
[3] Fujian Med Univ, Key Lab Gastrointestinal Canc, Minist Educ, Fuzhou 350122, Peoples R China
[4] Fujian Med Univ, Sch Med Technol & Engn, Dept Bioinformat, Fuzhou 350122, Peoples R China
[5] Fujian Med Univ, Sch Med Imaging, Fuzhou 350122, Peoples R China
[6] Tsinghua Univ, Inst Artificial Intelligence, Dept Comp Sci & Technol, BNRist, Beijing 100084, Peoples R China
[7] Fujian Med Univ, Union Hosp, Dept Crit Care Med, Fuzhou 350001, Peoples R China
关键词
Septic shock; Clinical phenotype; Latent profile analysis; SEPSIS; PATHOPHYSIOLOGY;
D O I
10.1016/j.jcrc.2024.154932
中图分类号
R4 [临床医学];
学科分类号
1002 ; 100602 ;
摘要
Background: Septic shock (SS) is a highly fatal and heterogeneous syndrome. Identifying distinct clinical phenotypes provides valuable insights into the underlying pathophysiological mechanisms and may help to propose precise clinical management strategies. Methods: Latent profile analysis (LPA), a model-based unsupervised method, was used for phenotyping in the MIMIC cohort, and the model was externally independently validated in the eICU and AUMC cohorts. Results: Three phenotypes, labeled phenotype I, II, and III, were derived. These phenotypes varied in demographics, clinical features, comorbidities, patterns of organ dysfunction, organ support, and prognosis. Phenotype I, characterized by the most severe organ dysfunction (especially liver), the youngest age, and the highest BMI, had the highest mortality (p < 0.001). Phenotype II, with moderate mortality, was characterized by severe renal injury. In contrast, phenotype III, associated with the oldest age and the fewest comorbidities, exhibited significantly lower mortality. Phenotype I patients had the steepest survival curves and demonstrated an ultra-high risk of death, particularly within the first few days after SS onset. Conclusions: The individualized identification of phenotypes is well suited to clinical practice. The three SS phenotypes differed significantly in pathophysiological and clinical outcomes, which are crucial for informing management decisions and prognosis.
引用
收藏
页数:9
相关论文
共 50 条
[11]   Clinical efficacy of oXiris-continuous hemofiltration adsorption in septic shock patients: A retrospective analysis [J].
Yang, Yuxin ;
Dong, Qionglan ;
Su, Jianpeng ;
Xiao, Hongjun ;
Zan, Dan ;
Chen, Jinfeng ;
Chen, Xue ;
Wei, Fan ;
Zeng, Cheng ;
Yong, Yanyan .
MEDICINA INTENSIVA, 2025, 49 (03) :135-144
[12]   Identification and transcriptomic assessment of latent profile pediatric septic shock phenotypes [J].
Atreya, Mihir R. ;
Huang, Min ;
Moore, Andrew R. ;
Zheng, Hong ;
Hasin-Brumshtein, Yehudit ;
Fitzgerald, Julie C. ;
Weiss, Scott L. ;
Cvijanovich, Natalie Z. ;
Bigham, Michael T. ;
Jain, Parag N. ;
Schwarz, Adam J. ;
Lutfi, Riad ;
Nowak, Jeffrey ;
Thomas, Neal J. ;
Quasney, Michael ;
Dahmer, Mary K. ;
Baines, Torrey ;
Haileselassie, Bereketeab ;
Lautz, Andrew J. ;
Stanski, Natalja L. ;
Standage, Stephen W. ;
Kaplan, Jennifer M. ;
Zingarelli, Basilia ;
Sahay, Rashmi ;
Zhang, Bin ;
Sweeney, Timothy E. ;
Khatri, Purvesh ;
Sanchez-Pinto, L. Nelson ;
Kamaleswaran, Rishikesan .
CRITICAL CARE, 2024, 28 (01)
[13]   Comparing the clinical characteristics and outcomes of septic shock children with and without malignancies: a retrospective cohort study [J].
Huang, Haixin ;
Zhang, Ruichen ;
Chen, Jian ;
Dang, Hongxing ;
Liu, Chengjun ;
Lu, Siwei ;
Fu, Yue-qiang .
JORNAL DE PEDIATRIA, 2024, 100 (06) :633-639
[14]   Evolution and Impact of Thrombocytopenia in Septic Shock: A Retrospective Cohort Study [J].
Menard, Chantalle E. ;
Kumar, Anand ;
Houston, Donald S. ;
Turgeon, Alexis F. ;
Rimmer, Emily ;
Houston, Brett L. ;
Doucette, Steven ;
Zarychanski, Ryan .
CRITICAL CARE MEDICINE, 2019, 47 (04) :558-565
[15]   Artificial intelligence based multispecialty mortality prediction models for septic shock in a multicenter retrospective study [J].
Wang, Shurui ;
Liu, Xinyi ;
Yuan, Shaohua ;
Bian, Yi ;
Wu, Hong ;
Ye, Qing .
NPJ DIGITAL MEDICINE, 2025, 8 (01)
[16]   Racial disparities in septic shock mortality: a retrospective cohort study [J].
Black, Lauren P. ;
Hopson, Charlotte ;
Puskarich, Michael A. ;
Modave, Francois ;
Booker, Staja Q. ;
Devos, Elizabeth ;
Fernandez, Rosemarie ;
Garvan, Cynthia ;
Guirgis, Faheem W. .
LANCET REGIONAL HEALTH-AMERICAS, 2024, 29
[17]   Phenotyping cardiogenic shock that showed different clinical outcomes and responses to vasopressor use: a latent profile analysis from MIMIC-IV database [J].
Yu, Yue ;
Rao, Jin ;
Xu, Qiumeng ;
Xiao, Jian ;
Cheng, Pengchao ;
Wang, Junnan ;
Xi, Wang ;
Wang, Pei ;
Zhang, Yufeng ;
Wang, Zhinong .
FRONTIERS IN MEDICINE, 2023, 10
[18]   Bundled care for septic shock: An analysis of clinical trials [J].
Barochia, Amisha V. ;
Cui, Xizhong ;
Vitberg, David ;
Suffredini, Anthony F. ;
O'Grady, Naomi P. ;
Banks, Steven M. ;
Minneci, Peter ;
Kern, Steven J. ;
Danner, Robert L. ;
Natanson, Charles ;
Eichacker, Peter Q. .
CRITICAL CARE MEDICINE, 2010, 38 (02) :668-678
[19]   Association between cumulative fluid balance and clinical outcome in patients with septic shock: A retrospective observational study [J].
Dash, Abhilash ;
Jena, Sunil ;
Chhotray, Pritam ;
Panda, Sagarika ;
Mishra, Shakti ;
Nayak, Biswajit .
INTERNATIONAL JOURNAL OF ACADEMIC MEDICINE, 2023, 9 (03) :121-125
[20]   The clinical outcomes and biomarker features of severe sepsis/septic shock with severe neutropenia: a retrospective cohort study [J].
Yin, Fan ;
Xi, Yue-Ling ;
Wang, Ying ;
Li, Bi-Ru ;
Qian, Juan ;
Ren, Hong ;
Zhang, Jian ;
Tang, Hong-Zhi ;
Ning, Bo-Tao .
TRANSLATIONAL PEDIATRICS, 2021, 10 (03) :464-473