GROMOV-WITTEN/PANDHARIPANDE-THOMAS CORRESPONDENCE VIA CONIFOLD TRANSITIONS

被引:0
作者
Lin, Yinbang [1 ]
Wang, Sz-sheng [2 ]
机构
[1] Tongji Univ, Minist Educ, Sch Math Sci, Key Lab Intelligent Comp & Applicat, Shanghai 200092, Peoples R China
[2] Natl Yang Ming Chiao Tung Univ, Dept Appl Math, Hsinchu 30010, Taiwan
关键词
Gromov-Witten; Pandharipande-Thomas; conifold transition; Calabi-Yau threefold; Fano threefold; CALABI-YAU; 3-FOLDS; WITTEN INVARIANTS; HALL ALGEBRAS; DEGENERATION; FORMULA; SCHEMES; SPACES;
D O I
10.1090/tran/9387
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a projective conifold transition of smooth projective threefolds from X to Y, we show that if the Gromov-Witten/Pandharipande- Thomas descendent correspondence holds for the resolution Y, then it also holds for the smoothing X with stationary descendent insertions. As applications, we show the correspondence in new cases, especially for Fano threefolds.
引用
收藏
页数:24
相关论文
共 55 条
  • [1] The intrinsic normal cone
    Behrend, K
    Fantechi, B
    [J]. INVENTIONES MATHEMATICAE, 1997, 128 (01) : 45 - 88
  • [2] BEILINSON AA, 1982, ASTERISQUE, P7
  • [3] HALL ALGEBRAS AND CURVE-COUNTING INVARIANTS
    Bridgeland, Tom
    [J]. JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 24 (04) : 969 - 998
  • [4] Donaldson-Thomas invariants and flops
    Calabrese, John
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2016, 716 : 103 - 145
  • [5] Cheltsov I, 2010, PROG MATH, V282, P75, DOI 10.1007/978-0-8176-4934-0_4
  • [6] DEGENERATION OF KAHLER MANIFOLDS
    CLEMENS, CH
    [J]. DUKE MATHEMATICAL JOURNAL, 1977, 44 (02) : 215 - 290
  • [7] DOUBLE SOLIDS
    CLEMENS, CH
    [J]. ADVANCES IN MATHEMATICS, 1983, 47 (02) : 107 - 230
  • [8] Coates Tom, 2022, Springer Proc. Math. Stat., V386, P135, DOI [10.1007/978-3-030-98327-76, DOI 10.1007/978-3-030-98327-76]
  • [9] Donaldson SK, 1998, GEOMETRIC UNIVERSE, P31
  • [10] Galkin S, 2018, Arxiv, DOI arXiv:1809.02705