Microstructure, Mechanical Properties, and Corrosion Resistance of Ti-Cu Alloys Prepared by Electroless Copper Plating and Hot Pressing Sintering

被引:0
作者
Liu, D. P. [1 ]
Zhang, J. P. [1 ]
Xu, J. L. [1 ]
Qi, M. H. [1 ]
Huang, J. [1 ]
Ma, Y. C. [1 ]
Luo, J. M. [1 ]
机构
[1] Nanchang Hangkong Univ, Sch Mat Sci & Engn, Nanchang 330063, Peoples R China
基金
中国国家自然科学基金;
关键词
biomedical application; electroless copper plating; hot pressing sintering; Ti-Cu alloy; INTERFACES;
D O I
10.1007/s11665-025-10647-2
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In order to obtain antibacterial titanium alloy with uniform microstructure, high strength, and low modulus, Ti-Cu alloys were prepared by electroless copper plating coupled with hot pressing sintering in this paper. The Cu contents in the Ti-Cu alloys can be precisely controlled by the concentrations of copper sulfate in the plating solution and the number of electroless plating times. After electroless copper plating, the Ti particles are evenly wrapped by Cu, forming a typical core-shell structure. The sintered Ti-Cu alloys are mainly composed of alpha-Ti and Ti2Cu phases, and the volume fraction of the Ti2Cu phase gradually increases with increasing the Cu contents. The Ti2Cu phase can be uniformly dispersed in the Ti matrix, and its morphology changes from rod-like to block-like structure with increasing the Cu contents. The Ti-Cu alloys possess high compressive strength (> 1500 MPa) and yield strength (> 950 MPa), as well as low elastic modulus (16-20 GPa), very close to the natural cortical bone. Moreover, the Ti-Cu alloys also have excellent corrosion resistance in SBF solution. This study provides a novel preparation method for antibacterial biomedical metallic materials.
引用
收藏
页数:10
相关论文
共 46 条
[1]   Biomedical Ti-Cu-Mn alloys with antibacterial capability [J].
Alqattan, M. ;
Alshammari, Y. ;
Yang, F. ;
Peters, L. ;
Bolzoni, L. .
JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2021, 10 :1020-1028
[2]   Optimization of mechanical properties, biocorrosion properties and antibacterial properties of wrought Ti-3Cu alloy by heat treatment [J].
Bao, Mianmian ;
Liu, Ying ;
Wang, Xiaoyan ;
Yang, Lei ;
Li, Shengyi ;
Ren, Jing ;
Qin, Gaowu ;
Zhang, Erlin .
BIOACTIVE MATERIALS, 2018, 3 (01) :28-38
[3]   Rapid quenching of semisolid Ti-Cu alloys: Insights into globular microstructure formation and coarsening [J].
Campo, K. N. ;
Lopes, E. S. N. ;
Parrish, C. J. ;
Caram, R. .
ACTA MATERIALIA, 2017, 139 :86-95
[4]   Improvement in antibacterial ability and cell cytotoxicity of Ti-Cu alloy by anodic oxidation [J].
Cao, Shuang ;
Zhang, Zi-Ming ;
Zhang, Jia-Qi ;
Wang, Ren-Xian ;
Wang, Xiao-Yan ;
Yang, Lei ;
Chen, Da-Fu ;
Qin, Gao-Wu ;
Zhang, Er-Lin .
RARE METALS, 2022, 41 (02) :594-609
[5]   Tungsten and nitrogen co-doped TiO2 nanobelts with significant visible light photoactivity [J].
Chen, Hongjian ;
Wang, Longxuan ;
Guan, Lixiu ;
Ren, Hui ;
Zhang, Yingxin ;
Tao, Junguang .
SURFACE AND INTERFACE ANALYSIS, 2018, 50 (02) :146-153
[6]   Enhanced mechanical, bio-corrosion, and antibacterial properties of Ti-Cu alloy by forming a gradient nanostructured surface layer [J].
Chen, Mian ;
Wang, Xiaoqiao ;
Hou, Xu ;
Qiu, Jing ;
Zhang, Erlin ;
Hu, Jian .
SURFACE & COATINGS TECHNOLOGY, 2023, 465
[7]   Microstructural and electrochemical corrosion properties of electroless Ni-P-TaC composite coating [J].
Dhakal, Dhani Ram ;
Gyawali, Gobinda ;
Kshetri, Yuwaraj K. ;
Choi, Jin-Hyuk ;
Lee, Soo Wohn .
SURFACE & COATINGS TECHNOLOGY, 2020, 381
[8]   Antibacterial property of a gradient Cu-bearing titanium alloy by laser additive manufacturing [J].
Fan, Dong-Yang ;
Yi, Zhe ;
Feng, Xu ;
Tian, Wen-Zhi ;
Xu, Da-Ke ;
Cristino Valentino, A. M. ;
Wang, Qiang ;
Sun, Hong-Chen .
RARE METALS, 2022, 41 (02) :580-593
[9]   Ti based biomaterials, the ultimate choice for orthopaedic implants - A review [J].
Geetha, M. ;
Singh, A. K. ;
Asokamani, R. ;
Gogia, A. K. .
PROGRESS IN MATERIALS SCIENCE, 2009, 54 (03) :397-425
[10]   Electroless copper deposition: A critical review [J].
Ghosh, Swatilekha .
THIN SOLID FILMS, 2019, 669 :641-658