Prediction of electric vehicle battery state of health estimation using a hybrid deep learning mechanism

被引:0
|
作者
Kant, Akshat [1 ]
Kumar, Manish [1 ]
Sihag, Sathans [2 ]
机构
[1] Cent Univ Haryana, Dept Elect Engn, SOET, Room 2, Mahendergarh 123021, Haryana, India
[2] Natl Inst Technol, Dept Elect Engn, Kurukshetra, India
关键词
Battery management system (BMS); root mean square error (RMSE); equivalent electrical circuit model (EECM); capacity prediction; gate recurrent unit (GRU); LITHIUM-ION BATTERIES;
D O I
10.1080/15435075.2024.2448301
中图分类号
O414.1 [热力学];
学科分类号
摘要
Lithium-ion batteries (LIBs) are widely employed, but fluctuations in temperature, overcharging, and overdischarging reduce their service lifetime. Battery health issues such as accelerated deterioration, loss of capacity, and thermal runaway can also endanger battery safety and functionality. This paper presents the integration of a Bidirectional Recurrent Neural Network and Long Short-Term Memory (biRNN-LSTM) network improve the prediction capability of Li-ion battery State of Health (SoH) with complex patterns identification and higher prediction accuracy. Compared to traditional feed-forward neural networks, RNNs are designed to learn temporal dependencies and perform sequence recognition on the original data. After this, LSTM modules improve this by being an example of the long-term time series information, which helps solve problems such as vanishing gradients. To highlight the effectiveness of the proposed method and compare it with the Deep Convolutional Neural Network and Long Short-Term Memory (DCNN-LSTM), Gate Recurrent Unit (GRU), and Long Short-Term Memory (LSTM) from the literature to make accurate and reliable predictions, the Root Mean Square Error (RMSE), Maximum Accuracy Error (MAE), and Maximum Error (MAX) assessment metrics were used for performance evaluation. GRU needs 8000 iterations to identify SoH estimation errors because it is less capable of learning long-term dependencies. The proposed technique can detect errors after 7000 iterations since it performs exceptionally well in capturing fine-grained temporal dynamics.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] State of Health Prediction in Electric Vehicle Batteries Using a Deep Learning Model
    Alhazmi, Raid Mohsen
    WORLD ELECTRIC VEHICLE JOURNAL, 2024, 15 (09):
  • [2] A Review of Battery State of Health Estimation Methods: Hybrid Electric Vehicle Challenges
    Noura, Nassim
    Boulon, Loic
    Jemei, Samir
    WORLD ELECTRIC VEHICLE JOURNAL, 2020, 11 (04): : 1 - 20
  • [3] State of health estimation and prediction of electric vehicle power battery based on operational vehicle data
    Li, Xu
    Wang, Peng
    Wang, Jianchun
    Xiu, Fangzhao
    Xia, Yuhang
    JOURNAL OF ENERGY STORAGE, 2023, 72
  • [4] Electric vehicle battery state of health estimation using Incremental Capacity Analysis
    Gismero, Alejandro
    Norregaard, Kjeld
    Johnsen, Bjarne
    Stenhoj, Lasse
    Stroe, Daniel-Ioan
    Schaltz, Erik
    JOURNAL OF ENERGY STORAGE, 2023, 64
  • [5] Online battery state of health estimation based on Genetic Algorithm for electric and hybrid vehicle applications
    Chen, Zheng
    Mi, Chunting Chris
    Fu, Yuhong
    Xu, Jun
    Gong, Xianzhi
    JOURNAL OF POWER SOURCES, 2013, 240 : 184 - 192
  • [6] A parametric battery state of health estimation method for electric vehicle applications
    Sarikurt, Turev
    Ceylan, Murat
    Balikci, Abdulkadir
    TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES, 2017, 25 (04) : 2860 - 2870
  • [7] State of Charge Estimation for Electric Vehicle Battery Management Systems Using the Hybrid Recurrent Learning Approach with Explainable Artificial Intelligence
    Shahriar, Saleh Mohammed
    Bhuiyan, Erphan A.
    Nahiduzzaman, Md.
    Ahsan, Mominul
    Haider, Julfikar
    ENERGIES, 2022, 15 (21)
  • [8] The Li-ion Battery State of Charge Prediction of Electric Vehicle Using Deep Neural Network
    Zhao, Fen
    Li, Penghua
    Li, Yinguo
    Li, Yuanyuan
    PROCEEDINGS OF THE 2019 31ST CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2019), 2019, : 773 - 777
  • [9] Deep transfer learning enables battery state of charge and state of health estimation
    Yang, Yongsong
    Xu, Yuchen
    Nie, Yuwei
    Li, Jianming
    Liu, Shizhuo
    Zhao, Lijun
    Yu, Quanqing
    Zhang, Chengming
    ENERGY, 2024, 294
  • [10] Electric vehicle battery capacity degradation and health estimation using machine-learning techniques: a review
    Das, Kaushik
    Kumar, Roushan
    CLEAN ENERGY, 2023, 7 (06): : 1268 - 1281