Applications of Artificial Intelligence for Metastatic Gastrointestinal Cancer: A Systematic Literature Review

被引:0
作者
Naemi, Amin [1 ]
Tashk, Ashkan [2 ]
Azar, Amir Sorayaie [3 ,4 ]
Samimi, Tahereh [5 ,6 ]
Tavassoli, Ghanbar [7 ]
Mohasefi, Anita Bagherzadeh [4 ]
Khanshan, Elaheh Nasiri [4 ]
Najafabad, Mehrdad Heshmat [4 ]
Tarighi, Vafa [4 ]
Wiil, Uffe Kock [3 ]
Mohasefi, Jamshid Bagherzadeh [3 ,4 ]
Pirnejad, Habibollah [8 ,9 ]
Niazkhani, Zahra [10 ,11 ]
机构
[1] Univ Southern Denmark, Dept Biol, Nordcee, DK-5230 Odense, Denmark
[2] Tech Univ Denmark DTU, Cognit Syst, DTU Compute, DK-2800 Copenhagen, Denmark
[3] Univ Southern Denmark, Maersk Mc Kinney Moller Inst, SDU Hlth Informat & Technol, DK-5230 Odense, Denmark
[4] Urmia Univ, Dept Comp Engn, Orumiyeh 165, Iran
[5] Urmia Univ Med Sci, Student Res Comm, Orumiyeh 1138, Iran
[6] Urmia Univ Med Sci, Dept Med Informat, Orumiyeh 1138, Iran
[7] Islamic Azad Univ, Dept Comp Engn, Urmia Branch, Orumiyeh 969, Iran
[8] Urmia Univ Med Sci, Clin Res Inst, Patient Safety Res Ctr, Orumiyeh 1138, Iran
[9] Univ Amsterdam, Dept Radiol & Nucl Med, Med Ctr, Amsterdam, Netherlands
[10] Urmia Univ Med Sci, Clin Res Inst, Nephrol & Kidney Transplant Res Ctr, Orumiyeh 1138, Iran
[11] Erasmus Univ, Erasmus Sch Hlth Policy & Management ESHPM, NL-3000 Rotterdam, Netherlands
关键词
artificial intelligence; gastrointestinal cancer; metastasis; systematic review; LYMPH-NODE METASTASIS; PREDICTION MODEL; LIVER METASTASIS; RADIOMICS;
D O I
10.3390/cancers17030558
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background/Objectives: This systematic literature review examines the application of Artificial Intelligence (AI) in the diagnosis, treatment, and follow-up of metastatic gastrointestinal cancers. Methods: The databases PubMed, Scopus, Embase (Ovid), and Google Scholar were searched for published articles in English from January 2010 to January 2022, focusing on AI models in metastatic gastrointestinal cancers. Results: forty-six studies were included in the final set of reviewed papers. The critical appraisal and data extraction followed the checklist for systematic reviews of prediction modeling studies. The risk of bias in the included papers was assessed using the prediction risk of bias assessment tool. Conclusions: AI techniques, including machine learning and deep learning models, have shown promise in improving diagnostic accuracy, predicting treatment outcomes, and identifying prognostic biomarkers. Despite these advancements, challenges persist, such as reliance on retrospective data, variability in imaging protocols, small sample sizes, and data preprocessing and model interpretability issues. These challenges limit the generalizability, clinical application, and integration of AI models.
引用
收藏
页数:23
相关论文
共 65 条
[1]   State-of-the-art in artificial neural network applications: A survey [J].
Abiodun, Oludare Isaac ;
Jantan, Aman ;
Omolara, Abiodun Esther ;
Dada, Kemi Victoria ;
Mohamed, Nachaat AbdElatif ;
Arshad, Humaira .
HELIYON, 2018, 4 (11)
[2]   Development of a Novel Prognostic Model for Predicting Lymph Node Metastasis in Early Colorectal Cancer: Analysis Based on the Surveillance, Epidemiology, and End Results Database [J].
Ahn, Ji Hyun ;
Kwak, Min Seob ;
Lee, Hun Hee ;
Cha, Jae Myung ;
Shin, Hyun Phil ;
Jeon, Jung Won ;
Yoon, Jin Young .
FRONTIERS IN ONCOLOGY, 2021, 11
[3]   Deep learning radiomics of dual-energy computed tomography for predicting lymph node metastases of pancreatic ductal adenocarcinoma [J].
An, Chao ;
Li, Dongyang ;
Li, Sheng ;
Li, Wangzhong ;
Tong, Tong ;
Liu, Lizhi ;
Jiang, Dongping ;
Jiang, Linling ;
Ruan, Guangying ;
Hai, Ning ;
Fu, Yan ;
Wang, Kun ;
Zhuo, Shuiqing ;
Tian, Jie .
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2022, 49 (04) :1187-1199
[4]   CT evaluation of extranodal extension of cervical lymph node metastases in patients with oral squamous cell carcinoma using deep learning classification [J].
Ariji, Yoshiko ;
Sugita, Yoshihiko ;
Nagao, Toru ;
Nakayama, Atsushi ;
Fukuda, Motoki ;
Kise, Yoshitaka ;
Nozawa, Michihito ;
Nishiyama, Masako ;
Katumata, Akitoshi ;
Ariji, Eiichiro .
ORAL RADIOLOGY, 2020, 36 (02) :148-155
[5]   Contrast-enhanced computed tomography image assessment of cervical lymph node metastasis in patients with oral cancer by using a deep learning system of artificial intelligence [J].
Ariji, Yoshiko ;
Fukuda, Motoki ;
Kise, Yoshitaka ;
Nozawa, Michihito ;
Yanashita, Yudai ;
Fujita, Hiroshi ;
Katsumata, Akitoshi ;
Ariji, Eiichiro .
ORAL SURGERY ORAL MEDICINE ORAL PATHOLOGY ORAL RADIOLOGY, 2019, 127 (05) :458-463
[6]  
Azar A.S., 2021, Front. Biomed. Technol, V8, P131
[7]  
Breiman L, 2001, MACH LEARN, V45, P5, DOI [10.1186/s12859-018-2419-4, 10.3322/caac.21834]
[8]  
Breiman L., 1984, Classi cation and Regression Trees
[9]   Machine learning to predict occult nodal metastasis in early oral squamous cell carcinoma [J].
Bur, Andres M. ;
Holcomb, Andrew ;
Goodwin, Sara ;
Woodroof, Janet ;
Karadaghy, Omar ;
Shnayder, Yelizaveta ;
Kakarala, Kiran ;
Brant, Jason ;
Shew, Matthew .
ORAL ONCOLOGY, 2019, 92 :20-25
[10]   Development of a Deep-Learning Pipeline to Recognize and Characterize Macrophages in Colo-Rectal Liver Metastasis [J].
Cancian, Pierandrea ;
Cortese, Nina ;
Donadon, Matteo ;
Di Maio, Marco ;
Soldani, Cristiana ;
Marchesi, Federica ;
Savevski, Victor ;
Santambrogio, Marco Domenico ;
Cerina, Luca ;
Laino, Maria Elena ;
Torzilli, Guido ;
Mantovani, Alberto ;
Terracciano, Luigi ;
Roncalli, Massimo ;
Di Tommaso, Luca .
CANCERS, 2021, 13 (13)