Asymmetric transfer matrix analysis of Lyapunov exponents in one-dimensional nonreciprocal quasicrystals

被引:10
作者
Li, Shan-Zhong [1 ,2 ]
Cheng, Enhong [1 ,2 ]
Zhu, Shi-Liang [1 ,2 ,3 ]
Li, Zhi [1 ,2 ]
机构
[1] South China Normal Univ, Guangdong Basic Res Ctr Excellence Struct & Fundam, Key Lab Atom & Subatom Struct & Quantum Control, Sch Phys,Minist Educ, Guangzhou 510006, Peoples R China
[2] South China Normal Univ, Frontier Res Inst Phys, Guangdong Prov Key Lab Quantum Engn & Quantum Mat, Guangdong Hong Kong Joint Lab Quantum Matter, Guangzhou 510006, Peoples R China
[3] Quantum Sci Ctr Guangdong Hong Kong Macao Greater, Shenzhen 518048, Peoples R China
关键词
LOCALIZATION; DIFFUSION; SYMMETRY; ABSENCE;
D O I
10.1103/PhysRevB.110.134203
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The Lyapunov exponent, serving as an indicator of the localized state, is commonly utilized to identify localization transitions in disordered systems. In non-Hermitian quasicrystals, the non-Hermitian effect induced by nonreciprocal hopping can lead to the manifestation of two distinct Lyapunov exponents on opposite sides of the localization center. Building on this observation, we here introduce a comprehensive approach for examining the localization characteristics and mobility edges of nonreciprocal quasicrystals, referred to as asymmetric transfer matrix analysis. We demonstrate the application of this method to three specific scenarios: the nonreciprocal Aubry-Andr & eacute; model, the nonreciprocal off-diagonal Aubry-Andr & eacute; model, and the nonreciprocal mosaic quasicrystals. This work may contribute valuable insights to the investigation of non-Hermitian quasicrystal and disordered systems.
引用
收藏
页数:11
相关论文
共 119 条
[1]   SCALING THEORY OF LOCALIZATION - ABSENCE OF QUANTUM DIFFUSION IN 2 DIMENSIONS [J].
ABRAHAMS, E ;
ANDERSON, PW ;
LICCIARDELLO, DC ;
RAMAKRISHNAN, TV .
PHYSICAL REVIEW LETTERS, 1979, 42 (10) :673-676
[2]   Localization transitions in a non-Hermitian quasiperiodic lattice [J].
Acharya, Aruna Prasad ;
Datta, Sanjoy .
PHYSICAL REVIEW B, 2024, 109 (02)
[3]   Interactions and Mobility Edges: Observing the Generalized Aubry-Andre Model [J].
An, Fangzhao Alex ;
Padavic, Karmela ;
Meier, Eric J. ;
Hegde, Suraj ;
Ganeshan, Sriram ;
Pixley, J. H. ;
Vishveshwara, Smitha ;
Gadway, Bryce .
PHYSICAL REVIEW LETTERS, 2021, 126 (04)
[4]   Engineering a Flux-Dependent Mobility Edge in Disordered Zigzag Chains [J].
An, Fangzhao Alex ;
Meier, Eric J. ;
Gadway, Bryce .
PHYSICAL REVIEW X, 2018, 8 (03)
[5]   ABSENCE OF DIFFUSION IN CERTAIN RANDOM LATTICES [J].
ANDERSON, PW .
PHYSICAL REVIEW, 1958, 109 (05) :1492-1505
[6]   Non-Hermitian physics [J].
Ashida, Yuto ;
Gong, Zongping ;
Ueda, Masahito .
ADVANCES IN PHYSICS, 2020, 69 (03) :249-435
[7]  
Aubry S., 1980, Annals of the Israel Physical Society, V3, P133
[8]   Global theory of one-frequency Schrodinger operators [J].
Avila, Artur .
ACTA MATHEMATICA, 2015, 215 (01) :1-54
[9]   Real spectra in non-Hermitian Hamiltonians having PT symmetry [J].
Bender, CM ;
Boettcher, S .
PHYSICAL REVIEW LETTERS, 1998, 80 (24) :5243-5246
[10]   Exceptional topology of non-Hermitian systems [J].
Bergholtz, Emil J. ;
Budich, Jan Carl ;
Kunst, Flore K. .
REVIEWS OF MODERN PHYSICS, 2021, 93 (01)