Hammerstein equations for sparse random matrices

被引:1
作者
Akara-pipattana, Pawat [1 ]
Evnin, Oleg [2 ,3 ,4 ]
机构
[1] Univ Paris Saclay, CNRS, LPTMS, F-91405 Orsay, France
[2] Chulalongkorn Univ, Fac Sci, Dept Phys, High Energy Phys Res Unit, Bangkok 10330, Thailand
[3] Vrije Univ Brussel, Theoret Nat Kunde, B-1050 Brussels, Belgium
[4] Int Solvay Inst, B-1050 Brussels, Belgium
关键词
sparse random matrix spectra; statistical field theory; large N saddle points; nonlinear integral equations; DENSITY-OF-STATES; SPECTRUM; PHYSICS;
D O I
10.1088/1751-8121/ada8ea
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Finding eigenvalue distributions for a number of sparse random matrix ensembles can be reduced to solving nonlinear integral equations of the Hammerstein type. While a systematic mathematical theory of such equations exists, it has not been previously applied to sparse matrix problems. We close this gap in the literature by showing how one can employ numerical solutions of Hammerstein equations to accurately recover the spectra of adjacency matrices and Laplacians of random graphs. While our treatment focuses on random graphs for concreteness, the methodology has broad applications to more general sparse random matrices.
引用
收藏
页数:24
相关论文
共 50 条
[21]   ITERATIVE APPROXIMATION OF SOLUTIONS OF GENERALIZED EQUATIONS OF HAMMERSTEIN TYPE [J].
Chidume, C. E. ;
Shehu, Y. .
FIXED POINT THEORY, 2014, 15 (02) :427-440
[22]   New iterative methods for finding solutions of Hammerstein equations [J].
Boikanyo, Oganeditse A. ;
Zegeye, Habtu .
JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2023, 69 (02) :1465-1490
[23]   Universality classes of non-Hermitian random matrices [J].
Hamazaki, Ryusuke ;
Kawabata, Kohei ;
Kura, Naoto ;
Ueda, Masahito .
PHYSICAL REVIEW RESEARCH, 2020, 2 (02)
[24]   UNIVERSALITY OF WIGNER RANDOM MATRICES [J].
Erdos, Laszlo .
XVITH INTERNATIONAL CONGRESS ON MATHEMATICAL PHYSICS, 2010, :86-105
[25]   A Chebyshev approximation for solving nonlinear integral equations of Hammerstein type [J].
Babolian, E. ;
Fattahzadeh, F. ;
Raboky, E. Golpar .
APPLIED MATHEMATICS AND COMPUTATION, 2007, 189 (01) :641-646
[26]   Strong convergence theorem for approximation of solutions of equations of Hammerstein type [J].
Chidume, C. E. ;
Shehu, Y. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (14) :5664-5671
[27]   EXTRAPOLATION OF A DISCRETE COLLOCATION-TYPE METHOD OF HAMMERSTEIN EQUATIONS [J].
HAN, GQ .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1995, 61 (01) :73-86
[28]   Random matrix analysis of deep neural network weight matrices [J].
Thamm, Matthias ;
Staats, Max ;
Rosenow, Bernd .
PHYSICAL REVIEW E, 2022, 106 (05)
[29]   Native ultrametricity of sparse random ensembles [J].
Avetisov, V. ;
Krapivsky, P. L. ;
Nechaev, S. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2016, 49 (03)
[30]   MAJOR RANDOM MATRICES AND UNIVERSALITY THEOREMS [J].
Guionnet, Alice .
ASTERISQUE, 2011, (339) :203-237