Hammerstein equations for sparse random matrices

被引:0
|
作者
Akara-pipattana, Pawat [1 ]
Evnin, Oleg [2 ,3 ,4 ]
机构
[1] Univ Paris Saclay, CNRS, LPTMS, F-91405 Orsay, France
[2] Chulalongkorn Univ, Fac Sci, Dept Phys, High Energy Phys Res Unit, Bangkok 10330, Thailand
[3] Vrije Univ Brussel, Theoret Nat Kunde, B-1050 Brussels, Belgium
[4] Int Solvay Inst, B-1050 Brussels, Belgium
关键词
sparse random matrix spectra; statistical field theory; large N saddle points; nonlinear integral equations; DENSITY-OF-STATES; SPECTRUM; PHYSICS;
D O I
10.1088/1751-8121/ada8ea
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Finding eigenvalue distributions for a number of sparse random matrix ensembles can be reduced to solving nonlinear integral equations of the Hammerstein type. While a systematic mathematical theory of such equations exists, it has not been previously applied to sparse matrix problems. We close this gap in the literature by showing how one can employ numerical solutions of Hammerstein equations to accurately recover the spectra of adjacency matrices and Laplacians of random graphs. While our treatment focuses on random graphs for concreteness, the methodology has broad applications to more general sparse random matrices.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] Sparse random block matrices
    Cicuta, Giovanni M.
    Pernici, Mario
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2022, 55 (17)
  • [2] Equivalence of replica and cavity methods for computing spectra of sparse random matrices
    Slanina, Frantisek
    PHYSICAL REVIEW E, 2011, 83 (01):
  • [3] Extreme eigenvalues of sparse, heavy tailed random matrices
    Auffinger, Antonio
    Tang, Si
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2016, 126 (11) : 3310 - 3330
  • [4] Sparse block-structured random matrices: universality
    Cicuta, Giovanni M.
    Pernici, Mario
    JOURNAL OF PHYSICS-COMPLEXITY, 2023, 4 (02):
  • [5] Spectral theory of sparse non-Hermitian random matrices
    Metz, Fernando Lucas
    Neri, Izaak
    Rogers, Tim
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2019, 52 (43)
  • [6] Path-integral approach to sparse non-Hermitian random matrices
    Baron, Joseph W.
    PHYSICAL REVIEW E, 2025, 111 (03)
  • [7] Generalized Hammerstein Equations and Applications
    Graef, John
    Kong, Lingju
    Minhos, Feliz
    RESULTS IN MATHEMATICS, 2017, 72 (1-2) : 369 - 383
  • [8] An Inertial Algorithm for Solving Hammerstein Equations
    Chidume, Charles E.
    Adamu, Abubakar
    Nnakwe, Monday O.
    SYMMETRY-BASEL, 2021, 13 (03): : 1 - 13
  • [9] Random matrices with row constraints and eigenvalue distributions of graph Laplacians
    Akara-pipattana, Pawat
    Evnin, Oleg
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2023, 56 (29)
  • [10] Localization transition in symmetric random matrices
    Metz, F. L.
    Neri, I.
    Bolle, D.
    PHYSICAL REVIEW E, 2010, 82 (03):