Enhancing Sentiment Analysis for Chinese Texts Using a BERT-Based Model with a Custom Attention Mechanism

被引:0
|
作者
Ding, Linlin [1 ]
Han, Yiming [1 ]
Li, Mo [1 ]
Li, Dong [1 ]
机构
[1] Liaoning Univ, Sch Informat, Shenyang 110036, Peoples R China
来源
WEB INFORMATION SYSTEMS AND APPLICATIONS, WISA 2024 | 2024年 / 14883卷
基金
中国国家自然科学基金;
关键词
Emotion Classification; Social Media Analysis; BERT;
D O I
10.1007/978-981-97-7707-5_15
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The rise of social media has made automatic emotion recognition from extensive texts crucial in NLP(Natural language processing). Traditional sentiment analysis focuses on basic positive or negative sentiments, neglecting the broader spectrum of emotional complexity. Our innovative model addresses this by incorporating a pretrained BERT (Bidirectional Encoder Representations from Transformers) language model with an additional custom attention mechanism. This mechanism dynamically adjusts encoder layer weights to distinguish between semantically similar but emotionally distinct expressions, such as "anger" versus "sadness" or "happiness" versus "surprise." This approach enhances the model's sensitivity to emotional boundaries, allowing for more accurate identification and classification of complex emotions. Experimental results on two six-emotion datasets demonstrate superior performance in precision, recall, and F1-score compared to traditional models.
引用
收藏
页码:172 / 179
页数:8
相关论文
共 50 条
  • [21] Lexicon-Based vs. Bert-Based Sentiment Analysis: A Comparative Study in Italian
    Catelli, Rosario
    Pelosi, Serena
    Esposito, Massimo
    ELECTRONICS, 2022, 11 (03)
  • [22] BERT-based response selection in dialogue systems using utterance attention mechanisms
    Park, Yeongjoon
    Ko, Youngjoong
    Seo, Jungyun
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 209
  • [23] Target-Based Sentiment Analysis using a BERT Embedded Model
    Pingili, Shashipal Reddy
    Li, Longzhuang
    2020 IEEE 32ND INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI), 2020, : 1124 - 1128
  • [24] BERT-Based Sentiment Analysis for Low-Resourced Languages: A Case Study of Urdu Language
    Ashraf, Muhammad Rehan
    Jana, Yasmeen
    Umer, Qasim
    Jaffar, M. Arfan
    Chung, Sungwook
    Ramay, Waheed Yousuf
    IEEE ACCESS, 2023, 11 : 110245 - 110259
  • [25] Span-Level Emotion Cause Analysis by BERT-based Graph Attention Network
    Li, Xiangju
    Gao, Wei
    Feng, Shi
    Wang, Daling
    Joty, Shafiq
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, CIKM 2021, 2021, : 3221 - 3226
  • [26] Optimizing Customer Satisfaction Through Sentiment Analysis: A BERT-Based Machine Learning Approach to Extract Insights
    Rahman, Ben
    Maryani
    IEEE ACCESS, 2024, 12 : 151476 - 151489
  • [27] Sentiment Analysis of Chinese E-commerce Reviews Based on BERT
    Xie, Song
    Cao, Jingjing
    Wu, Zhou
    Liu, Kai
    Tao, Xiaohui
    Xie, Haoran
    2020 IEEE 18TH INTERNATIONAL CONFERENCE ON INDUSTRIAL INFORMATICS (INDIN), VOL 1, 2020, : 713 - 718
  • [28] DA-BERT: Enhancing Part-of-Speech Tagging of Aspect Sentiment Analysis Using BERT
    Pei, Songwen
    Wang, Lulu
    Shen, Tianma
    Ning, Zhong
    ADVANCED PARALLEL PROCESSING TECHNOLOGIES (APPT 2019), 2019, 11719 : 86 - 95
  • [29] Research on sentiment analysis of hotel review text based on BERT-TCN-BiLSTM-attention model
    Chi, Dianwei
    Huang, Tiantian
    Jia, Zehao
    Zhang, Sining
    ARRAY, 2025, 25
  • [30] A BERT based Sentiment Analysis and Key Entity Detection Approach for Online Financial Texts
    Zhao, Lingyun
    Li, Lin
    Zheng, Xinhao
    Zhang, Jianwei
    PROCEEDINGS OF THE 2021 IEEE 24TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN (CSCWD), 2021, : 1233 - 1238