Some inequalities for spectral geometric mean with applications

被引:1
作者
Furuichi, Shigeru [1 ,2 ]
Seo, Yuki [3 ]
机构
[1] Nihon Univ, Coll Humanities & Sci, Dept Informat Sci, Setagaya Ku, Tokyo 1568850, Japan
[2] SIMATS, Saveetha Sch Engn, Dept Math, Chennai 602105, Tamil Nadu, India
[3] Osaka Kyoiku Univ, Dept Math Educ, Osaka, Japan
关键词
Spectral geometric mean; operator geometric mean; Kantorovich constant; operator norm; <roman>log</roman>-majorization; R & eacute; nyi mean; relative entropy; RELATIVE ENTROPY; LOG-MAJORIZATION;
D O I
10.1080/03081087.2024.2433512
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Recently, the spectral geometric mean has been studied by some papers. In this paper, we first estimate the H & ouml;lder-type inequality of the spectral geometric mean of positive invertible operators on the Hilbert space for all real order in terms of the generalized Kantorovich constant and show the relation between the weighted geometric mean and the spectral geometric one under the usual operator order. Moreover, we show their operator norm version. Next, in the matrix case, we show the log-majorization for the spectral geometric mean and their applications. Among others, we show the order relation among three quantum Tsallis relative entropies. Finally we give a new lower bound of the Tsallis relative entropy.
引用
收藏
页码:1508 / 1527
页数:20
相关论文
共 42 条
[31]  
Matsumoto K., ARXIV
[32]   Operator spectral geometric versus geometric mean [J].
Moradi, Hamid Reza ;
Furuichi, Shigeru ;
Sababheh, Mohammad .
LINEAR & MULTILINEAR ALGEBRA, 2024, 72 (06) :997-1016
[33]  
Nakamoto R., 2007, NIHONKAI MATH J, V18, P43
[34]   Contraction of generalized relative entropy under stochastic mappings on matrices [J].
Petz, D ;
Ruskai, MB .
INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 1998, 1 (01) :83-89
[35]  
Petz D., 1986, Reports on Mathematical Physics, V23, P57, DOI 10.1016/0034-4877(86)90067-4
[36]  
Petz D, 2008, THEOR MATH PHYS SER, P1, DOI 10.1007/978-3-540-74636-2_1
[37]   Quantum-coherence quantifiers based on the Tsallis relative α entropies [J].
Rastegin, Alexey E. .
PHYSICAL REVIEW A, 2016, 93 (03)
[38]  
Seo Y., 2007, J MATH INEQUAL, V1, P39, DOI [10.7153/jmi-01-05, DOI 10.7153/JMI-01-05]
[39]   Matrix trace inequalities on Tsallis relative entropy of negative order [J].
Seo, Yuki .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 472 (02) :1499-1508
[40]  
Staszewski, 1982, ANN I HENRI POINCA A, V37, P51